value of k could be:
a)a+b
b)b+c
c)a-b
d)b-c
answer with explaination and get branliest
Answers
Question : -
If (a²+c²)/(a+c) = (b²+c²)/(b+c) = k and a ≠ b, then the value of k ?
- a) a+b
- b) b+c
- c) a-b
- d) b-c
ANSWER
Given : -
(a²+c²)/(a+c) = (b²+c²)/(b+c) = k & a≠b
Required to find : -
- Value of k ?
Solution : -
Given that;
(a²+c²)/(a+c) = (b²+c²)/(b+c) = k & a≠b
So,
(a²+c²)/(a+c) = k & (b²+c²)/(b+c) = k
We have,
(a²+c²)/(a+c) = k
a²+c² = k(a+c)
a²+c² = ak+ck
a²+c²-ak-ck = 0 .... (1)
Similarly,
(b²+c²)/(b+c) = k
b²+c² = k(b+c)
b²+c² = bk+ck
b²+c²-bk-ck = 0 ... (2)
From (1)&(2) we have,
a²+c²-ak-ck = b²+c²-bk-ck
cancelling the like terms on both sides
a²-ak = b²-bk
a²-b² = ak-bk
since,
- a²-b² = (a+b) (a-b)
(a+b) (a-b) = k(a-b)
cancelling (a-b) on both sides
(a+b) = k
Therefore,
Value of k = (a+b) ✓
Hence, option-A is correct ....
If (a²+c²)/(a+c) = (b²+c²)/(b+c) = k and a ≠ b, then the value of k ?
a) a+b
b) b+c
c) a-b
d) b-c
ANSWER :-
Given : -
(a²+c²)/(a+c) = (b²+c²)/(b+c) = k & a≠b
Required to find : -
Value of k ?
Solution : -
Given that;
(a²+c²)/(a+c) = (b²+c²)/(b+c) = k & a≠b
So,
(a²+c²)/(a+c) = k & (b²+c²)/(b+c) = k
We have,
(a²+c²)/(a+c) = k
a²+c² = k(a+c)
a²+c² = ak+ck
a²+c²-ak-ck = 0 .... (1)
Similarly,
(b²+c²)/(b+c) = k
b²+c² = k(b+c)
b²+c² = bk+ck
b²+c²-bk-ck = 0 ... (2)
From (1)&(2) we have,
a²+c²-ak-ck = b²+c²-bk-ck
cancelling the like terms on both sides
a²-ak = b²-bk
a²-b² = ak-bk
since,
a²-b² = (a+b) (a-b)
(a+b) (a-b) = k(a-b)
cancelling (a-b) on both sides
(a+b) = k
Therefore,
Value of k = (a+b) ✓
Hence, option-A is correct