Math, asked by geetsakhala, 4 hours ago

Value of k for which the pair of linear equations 3x + 4y = 7 and 3x + ky =8 has no solution is?


for class 10

please give correct answer ​

Answers

Answered by mahanteshgejji
2

Answer:

Value of k is 4

Step-by-step explanation:

3x + 4y = 7

∴ a₁ = 3. b₁ = 4 c₁ = -7

3x + ky = 8

∴ a₂ = 3. b₂ = k c₂ = - 8

Codition for no solution is

a₁/a₂ = b₁ /b₂ ≠ c₁ /c₂

3/3 = 4/k

∴ k = 4

Answered by Anonymous
39

Given :-

A Pair of linear equations :-

3x + 4y = 7 and 3x + ky = 8

To Find :-

For what values of "k" , the Given equations have no solution .

Used Concepts :-

For two Equations ;

 { \sf { a_{1} x + b_{1} y + c_{1} = 0 } }

 { \sf { a_{2} x + b_{2} y + c_{2} = 0 } }

The Pair of Equations have no solution if and only ;

  •  { \sf { \dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} \neq \dfrac{c_{1}}{c_{2}} } }

Solution :-

3x + 4y = 7 can be written as ;

3x + 4y - 7 = 0

3x + ky = 8 can be written as ;

3x + ky - 8 = 0

On Comparing 3x + 4y - 7 = 0 and 3x + ky - 8 = 0 with  { \sf { a_{1} x + b_{1} y + c_{1} = 0 } } and  { \sf { a_{2} x + b_{2} y + c_{2} = 0 } } . We gets ;

  •  { \sf { a_{1} = 3 } }
  •  { \sf { a_{2} = 3 } }
  •  { \sf { b_{1} = 4 } }
  •  { \sf { b_{2} = k } }
  •  { \sf { c_{1} = - 7 } }
  •  { \sf { c_{2} = - 8 } }

Now ,  { \sf { \dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} \neq \dfrac{c_{1}}{c_{2}} } }

 { \sf { \dfrac{3}{3} = \dfrac{4}{k} \neq \dfrac{ - 7 }{ - 8 } } }

 { \sf { 1 = \dfrac{4}{k} \neq \dfrac{7}{8} } }

 { \sf { 1 = \dfrac{4}{k} } }

 { \sf { k = 4 } }

Henceforth , For k = 4 , the given equations have no solution .

Similar questions