Math, asked by BadMan80, 4 months ago

value of lim(x-->infinite)(1/x-1/x²+1/x³... infinite)^1/x is equal to​

Attachments:

Answers

Answered by senboni123456
0

Answer:

(D) 1

Step-by-step explanation:

We have,

 \lim_{x \rarr \infty }( \frac{1}{x} -  \frac{1}{ {x}^{2} }  +  \frac{1}{ {x}^{3} }   - ...) ^{ \frac{1}{x} } \\

 \lim_{x \rarr \infty }( \frac{ \frac{1}{x} }{1 -  \frac{1}{x} } ) ^{ \frac{1}{x} } \\

 =  \lim_{x \rarr \infty }( \frac{1}{(x - 1)} )^{ \frac{1}{x} }  \\

 =   \lim_{x \rarr \infty } {e}^{ \frac{1}{x} ln( \frac{1}{(x - 1)} )}   \\

 =   \lim_{x \rarr \infty } {e}^{  - \frac{ ln(x - 1) }{x} }   \\

Using l'hospital rule,

 =  \lim_{x \rarr \infty } {e}^{ -  \frac{1  }{x - 1} }  \\

 =  {e}^{0}  = 1

Similar questions