Value of limx → 0(1+cot(x))sin(x)
Answers
Answered by
2
Step-by-step explanation:
SOLUTION
TO EVALUATE
\displaystyle \lim_{x \to 0} \: (1 + \cot x) \sin x
x→0
lim
(1+cotx)sinx
EVALUATION
\displaystyle \lim_{x \to 0} \: (1 + \cot x) \sin x
x→0
lim
(1+cotx)sinx
= \displaystyle \lim_{x \to 0} \: \bigg(1 + \frac{ \cos x}{ \sin x} \bigg) \sin x=
x→0
lim
(1+
sinx
cosx
)sinx
= \displaystyle \lim_{x \to 0} \: \bigg( \frac{\sin x + \cos x}{ \sin x} \bigg) \sin x=
x→0
lim
(
sinx
sinx+cosx
)sinx
= \displaystyle \lim_{x \to 0} \: ( {\sin x + \cos x})=
x→0
lim
(sinx+cosx)
= ( {\sin 0 + \cos 0})=(sin0+cos0)
= 0 + 1=0+1
= 1=1
Answered by
4
thank my answers ...
hope it will help you ....
Attachments:
Similar questions
Math,
29 days ago
Math,
29 days ago
English,
29 days ago
Social Sciences,
1 month ago
World Languages,
1 month ago
English,
9 months ago
Math,
9 months ago