Math, asked by hayagriv, 1 year ago

value of log 2 ( log 5 625) is

Answers

Answered by vipulbhardwaj00
23
Hope this is helpful to you
Attachments:
Answered by harendrachoubay
8

The value of \log_2 (\log_5 625)=2.

Step-by-step explanation:

We have,

\log_2 (\log_5 625)

To find, the value of \log_2 (\log_5 625)=?

\log_2 (\log_5 625)

=\log_2 (\log_5 5^{4} )

=\log_2 (4\log_5 5)

[ ∵ \log a^{m}=m\log a]

=\log_2 (4\times 1)

[ ∵\log_a a=1]

=\log_2 2^{2}

=2\log_2 2

=2\times 1=2

Hence, the value of \log_2 (\log_5 625)=2.

Similar questions