Math, asked by rs19771124, 10 months ago

value of m when 2x3+mx2+11m+3 exactly divisible by2x-1

Answers

Answered by trashikagoyal
2

Step-by-step explanation:

since \: the \: equation \: is \: exactly \: divisible \: by \: 2x - 1 \: so \: 2x - 1 \: is \: a \: factor \: of \: it. \\ therefore \: 2x - 1 = 0 \\ 2x = 1 \\  x=  \frac{1}{2}  \\ by \: putting \: the \: value \: of \: x \: in \: the \: equation \: we \: get \\ 2 {x}^{3}  + m {x}^{2}  + 11m + 3 = 0 \\ 2 \times  { (\frac{1}{2} })^{3}   \:  +  \: m \times  \ { (\frac{1}{2} })^{2}  \:  + 11 \times ( \frac{1}{2} ) \:  + 3  = 0\\  =  \frac{2}{8}  +  \frac{m}{4}  +  \frac{11}{2}  + 3 = 0 \\   = \frac{1}{4}  +  \frac{m}{4}  +  \frac{11}{2}  + 3  = 0\\  =  \frac{1 + m + (11 \times 2) + (3 \times 4)}{4}  = 0  \:  \:  \:  \: simplifying \: it \\   = \frac{1 + m + 22 + 12}{4}  = 0 \\  =  \frac{35 + m}{4}  = 0 \\  = 35 + m = 0 \:  \:  \: by \: cross \: multiplication \\ m =  - 35 \:  \: ans

Similar questions