Value of |PA – PB|, inside an ideal liquid in accelerating container is
No spam...!
Answers
Value of |PA – PB|, inside an ideal liquid in accelerating container
Explanation:
=
=
x^2-y^2=(x+y)(x-y)
==
x^2-y^2=(x+y)(x-y)
(x)=(sin(x)+cos(x))(sin(x)−cos(x))
=(\sin (x)+\cos (x))(\sin (x)-\cos (x))=(sin(x)+cos(x))(sin(x)−cos(x))
=
x^2-y^2=(x+y)(x-y)
=
==
Answer:
Value of |PA – PB|, inside an ideal liquid in accelerating container
Explanation:
\color{red} {{{\Large {\bf{To\:\:Simplify\::\frac{\sin ^4(x)-\cos ^4(x)}{\sin ^2(x)-\cos ^2(x)}}}}}}ToSimplify:sin2(x)−cos2(x)sin4(x)−cos4(x)
\color{green}{{{\large {\bf{Your\:\:Answer\::\frac{\sin ^4(x)-\cos ^4(x)}{\sin ^2(x)-\cos ^2(x)}=1}}}}}YourAnswer:sin2(x)−cos2(x)sin4(x)−cos4(x)=1
\color{yellow} {\Huge {\sf{Solution:}}}Solution:
\color{blue} {\large {\bf{Factor\:\sin ^4(x)-\cos ^4(x)}}}Factorsin4(x)−cos4(x)
\tt \color{blue} {\mathrm{Rewrite\:}\sin ^4(x)-\cos ^4(x)\mathrm{\:as\:}(\sin ^2(x))^2-(\cos ^2(x))^2=(\sin ^2(x))^2-(\cos ^2(x))^2}Rewritesin4(x)−cos4(x)as(sin2(x))2−(cos2(x))2=(sin2(x))2−(cos2(x))2
\color{fuchsia} {\normalsize {\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=(a^b)^c}}Applyexponentrule:abc=(ab)c
\color{fuchsia} {\normalsize \sin ^4(x)=(\sin ^2(x))^2}sin4(x)=(sin2(x))2
\color{fuchsia} {\normalsize =(\sin ^2(x))^2-\cos ^4(x)}=(sin2(x))2−cos4(x) =
\color{fuchsia} {\normalsize \mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=(a^b)^c}Applyexponentrule:abc=(ab)c
\color{fuchsia} {\normalsize \cos ^4(x)=(\cos ^2(x))^2}cos4(x)=(cos2(x))2
\color{fuchsia} {\normalsize =(\sin ^2(x))^2-(\cos ^2(x))^2}=(sin2(x))2−(cos2(x))2 =
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}ApplyDifferenceofTwoSquaresFormula:x^2-y^2=(x+y)(x-y)
(\sin ^2(x))^2-(\cos ^2(x))^2=(\sin ^2(x)+\cos ^2(x))(\sin ^2(x)-\cos ^2(x))(sin2(x))2−(cos2(x))2=(sin2(x)+cos2(x))(sin2(x)−cos2(x))
=(\sin ^2(x)+\cos ^2(x))(\sin ^2(x)-\cos ^2(x))(sin2(x)+cos2(x))(sin2(x)−cos2(x)) =
\color{blue} {\large {\bf{Factor\:\sin ^2(x)-\cos ^2(x)}}}Factorsin2(x)−cos2(x)
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}ApplyDifferenceofTwoSquaresFormula:x^2-y^2=(x+y)(x-y)
\sin ^2(x)-\cos ^2(x)=(\sin (x)+\cos (x))(\sin (x)-\cos (x))sin2(x)−cos2(x)=(sin(x)+cos(x))(sin(x)−cos(x))
(x)=(sin(x)+cos(x))(sin(x)−cos(x))
=(\sin (x)+\cos (x))(\sin (x)-\cos (x))=(sin(x)+cos(x))(sin(x)−cos(x))
\large=(\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))\ \textless \ br /\ \textgreater \ (x))(sin(x)+cos(x))(sin(x)−cos(x))\ \textless \ br /\ \textgreater \ \large =\frac{(\sin ^2(x)+\cos ^2(x))(\sin (x)+\cos (x))(\sin (x)-\cos (x))}{\sin ^2(x)-\cos ^2(x)}=(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x)) \textless br/ \textgreater (x))(sin(x)+cos(x))(sin(x)−cos(x)) \textless br/ \textgreater =sin2(x)−cos2(x)(sin2(x)+cos2(x))(sin(x)+cos(x))(sin(x)−cos(x)) =
\mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}ApplyDifferenceofTwoSquaresFor