Value of (root3+tan1)(root3+tan2).............(root3+tan29)
Answers
Answer:
...................
Given: The term (√3+tan 1°)(√3+tan 2°).............(√3+tan 29°)
To find: The value of the given series.
Solution:
- Now we have given :
(√3+tan 1°)(√3+tan 2°).............(√3+tan 29°)
- Now consider a term:
√3 + tan(30 - x)
- Expanding it, we get:
√3 + tan(30 - x) = √3 + { (1/√3) - tanx / 1 + (tanx/√3) }
√3 + tan(30 - x) = √3 + { (1 - √3tanx /√3 + tanx }
√3 + tan(30 - x) = 4 / (√3 + tanx)
{√3 + tan(30 - x)} (√3 + tanx) = 4
- Putting x = 1, we get:
{√3 + tan(29)} (√3 + tan1) = 4 .......(i)
- Putting x = 2, we get:
{√3 + tan(28)} (√3 + tan2) = 4 ...........(ii)
- Similarly by putting x = 1-14, we will get all the terms which are present in the given series, except for (√3+tan 15°).
- So putting 15 now, we get:
{√3 + tan(15)} (√3 + tan 15) = 4
- Here we can see that both the brackets are same, so:
{√3 + tan(15)}² = 4
{√3 + tan(15)} = 2 (positive because tan 15 > 0) ........(iii)
- Multiplying (i), (ii) , all terms till 14 and (iii), we get:
(√3+tan 1°)(√3+tan 2°).............(√3+tan 29°) = 4^14 x 2
(√3+tan 1°)(√3+tan 2°).............(√3+tan 29°) = 2^29
Answer:
So the value of the given series is 2^29.