value of sec a when value of tan a is 5/12
Answers
Answer:
Answer:tan a=5/12
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2)
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2) √(25 + 144)
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2) √(25 + 144) √169
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2) √(25 + 144) √169 13
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2) √(25 + 144) √169 13sec alpha =1/cos alpha=hypotenuse/adjacent side=13/12
Answer:tan a=5/12from trig ratio [triangle] Tan alpha =opposite side / Adjacent side = 5/12hence,Hypotenuse = √(5^2+12^2) √(25 + 144) √169 13sec alpha =1/cos alpha=hypotenuse/adjacent side=13/12sec alpha =13/12
Step-by-step explanation:
HOPE YOU GET HELP FROM THIS ANSWER AND PLS MARK ME AS BRILIANT.....
Answer:
sec a = 13/12
Step-by-step explanation:
Sec^2 a = tan^2 a + 1
= (5/12)^2 + 1
= 25/144 + 1
=25+144/144 + 1 [On taking lcm]
=169/144
Sec^2 a =(13/12)^2
Sec a = 13/12