value of (secA+tanA)(1-sinA)=
Answers
Solution :- ( secA + tanA) (1 - sinA)
(1/cosA + sinA/cosA) ( 1 - sinA)
( 1 + sinA/cosA) ( 1 - sinA)
(1 - sin²A )/ cosA
( cos²A )/cosA = cosA Answer ✔
Answer:
( sec A + tan A ) ( 1 - sin A )
We know that sec A = 1 / cos A .
We also know that tan A = sin A / cos A .
⇒ ( 1 / cos A + sin A / cos A ) / ( 1 - sin A )
⇒ ( 1 + sin A ) / cos A / ( 1 - sin A )
⇒ ( 1 + sin A ) / cos A / ( 1 - sin A )
⇒ ( 1 + sin A ) ( 1 - sin A ) / cos A
By using the identity ( x + y )( x - y ) = x² - y² :
⇒ ( 1 - sin²A ) / cos A
We know that 1 - sin²A = cos²A :
⇒ cos²A / cos A
After cancelling the same terms we get :
⇒ cos A
The value will be cos A .
MORE INFO
Trigonometric ratios are cos , sin , tan , cot , cosec and sec .
These ratios are ratios of sides of a triangle .
They do not have any units .
They are periodic functions .