Math, asked by Atharvakshatriya, 1 year ago

value of (secA+tanA)(1-sinA)=​

Answers

Answered by TheLifeRacer
2

Solution :- ( secA + tanA) (1 - sinA)

(1/cosA + sinA/cosA) ( 1 - sinA)

( 1 + sinA/cosA) ( 1 - sinA)

(1 - sin²A )/ cosA

( cos²A )/cosA = cosA Answer ✔


gilfic: hloooo
gilfic: raj
gilfic: hlooo raj
gilfic: yeee please inbox
gilfic: i have some personal information about you
gilfic: if you inbox it is better for you
Answered by Anonymous
13

Answer:

( sec A + tan A ) ( 1 - sin A )

We know that sec A = 1 / cos A .

We also know that tan A = sin A / cos A .

⇒ ( 1 / cos A + sin A / cos A ) / ( 1 - sin A )

⇒ ( 1 + sin A ) / cos A / ( 1 - sin A )

⇒ ( 1 + sin A ) / cos A / ( 1 - sin A )

⇒ ( 1 + sin A ) ( 1 - sin A ) / cos A

By using the identity ( x + y )( x - y ) = x² - y² :

⇒ ( 1 - sin²A ) / cos A

We know that 1 - sin²A = cos²A :

⇒ cos²A / cos A

After cancelling the same terms we get :

⇒ cos A

The value will be cos A .

MORE INFO

Trigonometric ratios are cos , sin , tan , cot , cosec and sec .

These ratios are ratios of sides of a triangle .

They do not have any units .

They are periodic functions .

Similar questions