Math, asked by arpitashah28101977, 1 month ago

value of sin(sin^-1 1/7 +tan^-1 1/4) is​

Answers

Answered by abhilashakumarijha18
3

Step-by-step explanation:

Solution: (1) π / 4

sin-1 (3 / 5) + tan-1 (1 / 7) = tan-1 (3 / 4) + tan-1 (1 / 7)

= tan-1 [(3 / 4) + (1 / 7)] / [1 – (3 / 4) (1 / 7)]

= tan-1 (25 / 25)

= tan-1 1

= π / 4

Answered by vinod04jangid
1

Answer:

\frac{4( 1 + \sqrt{3}) }{7\sqrt{17} }

Step-by-step explanation:

Given :- The given expression is sin( sin^{-1} ( \frac{1}{7} ) + tan^{-1} ( \frac{1}{4} ) )

To Find:- The value of expression sin( sin^{-1} ( \frac{1}{7} ) + tan^{-1} ( \frac{1}{4} ) )

Solution :-

We know that, tan C = Perpendicular / Base

                Hypotenuse = √( Perpendicular² + Base² )

                sin^{-1} x + sin^{-1} y =  sin^{-1} [ x √(1-y²) + y √(1-x²) ]

The given expression is sin( sin^{-1} ( \frac{1}{7} ) + tan^{-1} ( \frac{1}{4} ) )

We can write tan^{-1} ( 1/4 ) = sin^{-1} ( 1/√17 )

Now, the expression becomes

= sin( sin^{-1} ( \frac{1}{7} ) + sin^{-1} ( \frac{1}{\sqrt{17} } ) )

= sin( sin^{-1} [ \frac{1}{7} \sqrt{1-(\frac{1}{\sqrt{17} } )^{2}} + \frac{1}{\sqrt{17} } \sqrt{1-(\frac{1}{{7} } )^{2}} ] )

= sin( sin^{-1} [ \frac{1}{7} \sqrt{1-\frac{1}{17} } + \frac{1}{\sqrt{17} } \sqrt{1-\frac{1}{49} } ] )

= sin( sin^{-1} [ \frac{1}{7} \sqrt{\frac{16}{17} } + \frac{1}{\sqrt{17} } \sqrt{\frac{48}{49} }} ] )

= sin( sin^{-1} [ \frac{1}{7} (\frac{4}{\sqrt{17} } ) + \frac{1}{\sqrt{17} } (\frac{4\sqrt{3} }{7} ) ] )

= sin( sin^{-1} [ \frac{4 + 4\sqrt{3} }{7\sqrt{17} } ] )

= \frac{4( 1 + \sqrt{3}) }{7\sqrt{17} }

Therefore, the value of sin( sin^{-1} ( \frac{1}{7} ) + tan^{-1} ( \frac{1}{4} ) ) = \frac{4( 1 + \sqrt{3}) }{7\sqrt{17} } .

#SPJ2

https://brainly.in/question/46680060

https://brainly.in/question/22879058

Similar questions