Math, asked by 20841, 1 month ago

value of sin2π/7+sin4π/7+sin8π/7=​

Answers

Answered by vikrantvikrantchaudh
2

Answer:

We seek S = sin (2π/7) + sin (4π/7) - sin (π/7)

Let s = sin(π/7), c = cos(π/7) so s² + c² = 1.

From cos(α + β) and sin(α + β) formulas come

cos(2π/7) = c² - s² = 2c² - 1

sin(2π/7) = 2cs

sin(3π/7) = s(2c² - 1) + c(2cs) = s(4c² - 1), and

sin(4π/7) = 4cs(2c²-1)

Since sin(3π/7) = sin(4π/7), we have 4c² - 1 = 4c(2c² - 1) or

(1): 8c³ = 4c² + 4c - 1

This means any polynomial in c can be reduced to a quadratic or less.

S² = (sin(2π/7) + sin(4π/7) - sin(π/7))²

= (sin(2π/7) + sin(3π/7) - sin(π/7))²

= (2sc + s(4c²-1) - s)²

= s² * (4c² + 2c -2)²

= (1-c²) * (4c² + 2c -2)² which was the reason for squaring S: a polynomial in c,

= (4c² + 2c - 2)² - (4c³ + 2c² - 2c)² which we now reduce. First, apply (1) to 4c³ to get

= (4c² + 2c - 2)² - (4c² - ½)² which, by difference of squares is

= (8c² + 2c - 5/2) * (2c - 3/2)

= 16c³ - 8c² - 8c + 15/4 and now apply (1) a final time

= -2 + 15/4

= 7/4

Hence, the value of the original expression is S = ½ * √7

Answered by itzPriyanka
1

Answer:

How can I prove ~ sin 2π/7 + sin 4π/7 + sin 8π/7 = √7/2?

Let x=2π7⟹7x=2π

∴3x=2π−4x

So, cosx+cos2x+cos4x

=12sinx2(2sinx2cosx+2sinx2cos2x+2sinx2cos4x)

=12sinx2(sin3x2−sinx2+sin5x2−sin3x2+sin9x2−sin7x2)

=12sinx2(−sinx2+sin9x2+sin5x2−sin2π2)[∵7x=2π]

=12sinx2(−sinx2+2sin7x2cosx)[∵sinπ=0]

=12sinx2(−sinx2+0)[∵sin7x2=sinπ=0]

∴cosx+cos2x+cos4x=−12(i)

Now,

(sinx+sin2x+sin4x)2+(cosx+cos2x+cos4x)2

=1+1+1+2(sinxsin2x+sin2xsin4x+sin4xsinx)+2(cosxcos2x+cos2xcos4x+cos4xcosx)

=3+2[cos(2x−x)+cos(4x−2x)+cos(4x−x)]

=3+2[cosx+cos2x+cos4x]

[∵cos3x=cos(2π−4x)=cos4x]

=3+2⋅(−12)[From Eq. (i)]

=3−1

⟹(sinx+sin2x+sin4x)2+(−12)2=2

⟹(sinx+sin2x+sin4x)2=2−14=74

∴sinx+sin2x+sin4x=7–√2.†

please Mark as brainliest ❤️

Similar questions