Math, asked by pundir1972, 5 months ago

Value of sin60cos30 + sin30 cos60 is​

Answers

Answered by Feirxefett
4

Answer in the attachment............

hope attachment will helps

Attachments:
Answered by thebrainlykapil
142

{\tt{\red{\underline{\underline{\huge{Answer= \: 1}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\LARGE{\bf{\underline{\underline\color{purple}{Solution:-}}}}

\boxed{ \sf \blue{ We \: know \: that  \: }}

  • \sf\green{  \sin(60°)  \:  =  \:  \frac{ \sqrt{3} }{2} }

  • \sf\green{  \cos(30°)  \:  =  \:  \frac{ \sqrt{3} }{2} }

  • \sf\green{  \sin(30°)  \:  =  \:  \frac{ 1 }{2} }

  • \sf\green{  \cos(60°)  \:  =  \:  \frac{ 1 }{2} }

━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{ \sf \red{ Putting \: all \: the \: Values }}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: sin60°\: cos30° \: +  \: sin30°\: cos60° }} }\\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:  \binom{ \sqrt{3} }{2}  \:  \times  \: \binom{ \sqrt{3} }{2}  \:  +  \:  \binom{1}{2}  \:  \times  \:  \binom{1}{2}  \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:   \frac{  \sqrt{3} \:  +  \:  \sqrt{3}  }{2 \:  \times  \:  2}  \:   +  \:  \frac{1}{2 \:  \times  \: 2}   \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:  \frac{3}{4}   \:  +  \: \frac{1}{4}   \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:  \frac{3\: + \: 1}{4}   \:    \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \displaystyle \sf \:  \frac{ 4}{4}   \:    \\ \\ \\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}: \implies \underline{ \boxed{\displaystyle \sf \bold{\: 1 }} }\\ \\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{ \sf \red{ Hence,\: the \: value \: of \:  sin60° cos30 \: + \: sin30 cos60 \: = \: 1}}

━━━━━━━━━━━━━━━━━━━━━━━━━

More about t-ratio

\boxed{ \sf \green{ T - Ratios}}

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions