Math, asked by krishnapalsinhrathod, 3 months ago

value of tan^-1(√3) - sec^-1(-2)​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {tan}^{ - 1}  \sqrt{3}  -  {sec}^{ -1 } ( - 2)

Identities Used :-

\boxed{ \red{ \bf \: tan\dfrac{\pi}{ 3}  =  \sqrt{3}}}

\boxed{ \red{ \bf \: sec\dfrac{\pi}{ 3}  =  2}}

\boxed{ \red{ \bf \:  {tan}^{ - 1}(tanx) = x}}

\boxed{ \red{ \bf \:  {sec}^{ - 1}(secx) = x}}

\boxed{ \red{ \bf \:  {sec}^{ - 1} ( - x) = \pi \:  -  {sec}^{ - 1} x}}

\huge\underline{\sf{Solution-}}

\rm :\longmapsto\: {tan}^{ - 1}  \sqrt{3}  -  {sec}^{ -1 } ( - 2)

\rm :\longmapsto\:  =  \:  \: {tan}^{ - 1}  \sqrt{3}  -   \bigg(\pi \:  - {sec}^{ -1 } 2 \bigg)

\rm :\longmapsto\:  =  \:  \: {tan}^{ - 1} \bigg(tan\dfrac{\pi}{ 3} \bigg)  - \pi \:  +  {sec}^{ - 1}\bigg(sec\dfrac{\pi}{ 3} \bigg)

\rm :\longmapsto\: =  \:  \: \dfrac{\pi}{ 3} - \pi \:  + \dfrac{\pi}{ 3}

\rm :\longmapsto\: =  \:  \: \dfrac{2\pi}{ 3} - \pi \:

\rm :\longmapsto\: =  \:  \: \dfrac{2\pi \:  - 3\pi}{ 3}

\rm :\longmapsto\: =  \:  \: \dfrac{\:  - \pi}{ 3}

Additional Information :-

\boxed{ \red{ \bf \:  {cos}^{ - 1} ( - x) = \pi \:  -  {cos}^{ - 1} x}}

\boxed{ \red{ \bf \:  {cot}^{ - 1} ( - x) = \pi \:  -  {cot}^{ - 1} x}}

\boxed{ \red{ \bf \:  {sin}^{ - 1}( - x) =  -  {sin}^{ - 1}x}}

\boxed{ \red{ \bf \:  {tan}^{ - 1}( - x) =  -  {tan}^{ - 1}x}}

\boxed{ \red{ \bf \:  {cosec}^{ - 1}( - x) =  -  {cosec}^{ - 1}x}}

Similar questions