Math, asked by mynameaaditya, 19 days ago

value of tan 2 π/3
slove by using this formula, tan(A+B) = tana +tanb/1-tana . tanb ​

Answers

Answered by mathdude500
10

Appropriate Question :-

\rm \: Find \: the \: value \: of \: tan\dfrac{2\pi}{3}, \: using \: the \: formula \:

\rm \: tan(a + b) = \dfrac{tana + tanb}{1 - tana \: tanb}  \\

\large\underline{\sf{Solution-}}

Given that,

\rm \: tan(a + b) = \dfrac{tana + tanb}{1 - tana \: tanb}  \\

Now, Substitute

\rm \: a \:  =  \: \dfrac{\pi}{3} \\

\rm \: b \:  =  \: \dfrac{\pi}{3} \\

we get

\rm \: tan\bigg(\dfrac{\pi}{3} + \dfrac{\pi}{3} \bigg)  = \dfrac{tan\dfrac{\pi}{3} + tan\dfrac{\pi}{3}}{1 - tan\dfrac{\pi}{3} \times tan\dfrac{\pi}{3}}  \\

\rm \: tan\dfrac{2\pi}{3} = \dfrac{ \sqrt{3}  +  \sqrt{3} }{1 -  \sqrt{3}  \times  \sqrt{3} }  \\

\rm \: tan\dfrac{2\pi}{3} = \dfrac{ 2\sqrt{3}}{1 - 3}  \\

\rm \: tan\dfrac{2\pi}{3} = \dfrac{ 2\sqrt{3}}{ -2 }  \\

\rm\implies \boxed{\sf{  \:\rm \: \:tan\dfrac{2\pi}{3} =  -  \sqrt{3} \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \:  \: }} \\

\boxed{\sf{  \:\rm \: sin(x  -  y) = sinx \: cosy \:   -   \: siny \: cosx \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x + y) = cosx \: cosy \:  -  \: sinx \: siny \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x  -  y) = cosx \: cosy \: +  \: sinx \: siny \:  \: }} \\

\boxed{\sf\rm \: {  \:tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \:  \: }} \\

Similar questions