Math, asked by himanshu141, 1 year ago

value of tan(3598)?


AbhijithPrakash: Is there any degree??
himanshu141: yup bro it is tan (3598°)
AbhijithPrakash: tan (178°) is the answer
AbhijithPrakash: and in Decimals -0.03492...

Answers

Answered by NIKET7369
0

Answer:

−0.0349207695 this is the correct answer

Answered by AbhijithPrakash
8

Answer:

\tan \left(3598^{\circ \:}\right)=\tan \left(178^{\circ \:}\right)\quad \begin{pmatrix}\mathrm{Decimal:}&-0.03492\dots \end{pmatrix}

Step-by-step explanation:

\tan \left(3598^{\circ \:}\right)

\mathrm{Rewrite\:the\:angles\:for}\:\tan \left(3598^{\circ \:}\right): $\tan\left(3598^{\circ\:}\right)=\tan\left(\dfrac{1710+89}{90}180^{\circ\:}\right)=\tan\left(\left(\dfrac{1710}{90}+\dfrac{89}{90}\right)180^{\circ\:}\right)=\tan\left(180^{\circ\:}\cdot\:19+\dfrac{89}{90}180^{\circ\:}\right)$

=\tan \left(180^{\circ \:}19+\dfrac{89}{90}180^{\circ \:}\right)

\mathrm{Use\:the\:periodiciity\:of\:}\tan :\quad \tan \left(x+180^{\circ \:}\cdot \:k\right)=\tan \left(x\right)

\tan \left(180^{\circ \:}\cdot \:19+\dfrac{89}{90}180^{\circ \:}\right)=\tan \left(\dfrac{89}{90}180^{\circ \:}\right)

=\tan \left(\dfrac{89}{90}180^{\circ \:}\right)

\mathrm{Simplify}

=\tan \left(178^{\circ \:}\right)

Similar questions