Science, asked by thapaavinitika6765, 8 months ago

Value of : \int _0^{\pi }\sin \left(x\right)dx

Answers

Answered by Anonymous
1

\mathrm{Use\:the\:common\:integral}:\quad \int \sin \left(x\right)dx=-\cos \left(x\right)

=\left[-\cos \left(x\right)\right]^{\pi }_0

\mathrm{Compute\:the\:boundaries}:\quad \left[-\cos \left(x\right)\right]^{\pi }_0=2

\int _a^bf\left(x\right)dx=F\left(b\right)-F\left(a\right)=\lim _{x\to \:b-}\left(F\left(x\right)\right)-\lim _{x\to \:a+}\left(F\left(x\right)\right)

\lim _{x\to \:0+}\left(-\cos \left(x\right)\right)=-1

\lim _{x\to \:\pi -}\left(-\cos \left(x\right)\right)=1

=1-\left(-1\right)

=2

Answered by Anonymous
1

Explanation:

Hope it helps you....?!!!

Attachments:
Similar questions