value of √x+1/√x on x= 2-√3
Answers
Answered by
1
Answer:
4
Step-by-step explanation:
x+\frac{1}{x}
Since x=2+\sqrt{3}
To find \frac{1}{x}
x=2+\sqrt{3}
\frac{1}{x} =\frac{1}{2 +\sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3}}
\frac{1}{x} =\frac{2 -\sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} }
\frac{1}{x}= \frac{2 -\sqrt{3}}{4 - 3}
\frac{1}{x}= 2- \sqrt{ 3}
Substitute the values
x+\frac{1}{x}
2+\sqrt{3}+2- \sqrt{ 3}
4
Hence the value of x+\frac{1}{x} is 4
Similar questions
Hindi,
5 months ago
Social Sciences,
5 months ago
English,
11 months ago
Biology,
1 year ago
Biology,
1 year ago