Math, asked by somaghosh311275, 4 months ago

value of x for which 7 by 12 to the power -4 x 7 by 12 to the power 3x equal to 7/12 the power ^5​

Answers

Answered by divya37615
1

Step-by-step explanation:

Correct question:-

In an equilateral triangle ABC, D is a point on side BC such that BD=⅓BC. prove that 9AD²=7AB².

Given:-

Equilateral triangle ABC D is a point an BC.

To prove:-

9AD²=7AB².

Construct:-

Lets draw AE _|_ BC.

Proof:-

All sides of equilateral triangle is equal.

\sf \: AB=BC=ACAB=BC=AC

\sf \: Let \: AB=BC=AC = xLetAB=BC=AC=x

Given

\sf \: BD = \frac{1}{3}BCBD=

3

1

BC

\sf \: BD = \frac{x}{3}BD=

3

x

In ∆AEB and ∆AEC

AE=AE (common)

AB=AC. ( Both x as it is equilateral triangle)

∠AEB= ∠AEC. ( both 90° as AE_|_ BC)

Hence by RHS congruency

∆AEB \cong ∆AEC∆AEB≅∆AEC

\sf \: \therefore \: BE= EC \: \: \: \: \: \: \: \: \: \: \: ( By \: CPCT )∴BE=EC(ByCPCT)

So, BE=EC= 1/2 BC

BE=EC=x/2

So,

\sf \: BE = \frac{ x }{2}BE=

2

x

\sf \: BD + DE = \frac{x}{2}BD+DE=

2

x

\sf \: \frac{x}{3} + DE = \frac{x}{2}

3

x

+DE=

2

x

\sf \: DE = \frac{x}{2} - \frac{x}{3}DE=

2

x

3

x

\sf \: DE = \frac{3x - 2x}{6}DE=

6

3x−2x

\sf \: DE = \frac{x}{6}DE=

6

x

Using pythagoras theorem

⇒(Hypotenuse)²= (Height)²+ (Base)²

Now in right ∆ AEB

⇒AB²=AE²+(BE)²

\sf \: ⇒x²= (AE)² +(\frac{x}{2})^2⇒x²=(AE)²+(

2

x

)

2

\sf \: ⇒x² =(AE)² + (\frac{x}{2})^2⇒x²=(AE)²+(

2

x

)

2

\sf \: ⇒x²-\frac{x}{4}^2=AE²⇒x²−

4

x

2

=AE²

\sf \: AE ^{2} = \frac{3x^{2} }{4} \: \: \: \: \: \: \: \: \: (1)AE

2

=

4

3x

2

(1)

Similarly,

In right ∆AED

\sf \: AD²=AE²+DE²AD²=AE²+DE²

\sf \: AD² = {3x}^{2} + ( \frac{x }{6} )^{2}AD²=3x

2

+(

6

x

)

2

\sf \: AD²= \frac{3 {x}^{2} }{4} + \frac{ {x}^{2} }{36}AD²=

4

3x

2

+

36

x

2

\sf \: AD²= \frac{( {3x}^{2}) \times 9 \times {x}^{2} }{36}AD²=

36

(3x

2

)×9×x

2

\sf \: AD²= \frac{27 {x}^{2} + {x}^{2} }{36}AD²=

36

27x

2

+x

2

\sf \: AD²= \frac{28 {x}^{2} }{36}AD²=

36

28x

2

\sf \: AD²= \frac{7 {x}^{2} }{9}AD²=

9

7x

2

\sf \: 9AD²=7 {x}^{2}9AD²=7x

2

\sf \: 9AD²=7AB ^{2}9AD²=7AB

2

Hence proved.

Similar questions