Math, asked by sairamv919, 9 months ago

value of x,y.where x<1​

Attachments:

Answers

Answered by Anonymous
7

Answer :-

x = 1/2, y = 4

Solution :-

Given equation :-

 \implies \sf \dfrac{2}{3}  =  \bigg(x -  \dfrac{1}{y}  \bigg) +   \bigg( {x}^{2}  -  \dfrac{1}{ {y}^{2} }  \bigg)......  \infty

On simplifying the equation,

 \implies \sf \dfrac{2}{3}   =  \bigg(  x  +   {x}^{2}  +  {x}^{3} ........ \infty  \bigg)-  \bigg( \dfrac{1}{y}     +  \dfrac{1}{ {y}^{2} } +  \dfrac{1}{ {y}^{3} }   ......  \infty  \bigg)

If we look the terms in RHS it looks like infinite GP

Here, we have 2 Infinite GPs

Finding common ratio

The Common ratios of GP are x and 1/y

Given

  • xy = 2
  • x < 1

Find the value of y in terms of x

Given, xy = 2

==> x = 2/y

Given, x < 1

==> 2/y < 1

==> 2 < y

==> y > 2

==> 1/2 > y

==> y < 1/2

Since, the Common ratio of both infinite GPs is r < 1

Hence, we can use the below Sum of infinite terms of GP formula

 \sf S =  \dfrac{a}{1 - r}

 \implies \sf \dfrac{2}{3}   =  \bigg(  x  +   {x}^{2}  +  {x}^{3} ........ \infty  \bigg)-  \bigg( \dfrac{1}{y}     +  \dfrac{1}{ {y}^{2} } +  \dfrac{1}{ {y}^{3} }   ......  \infty  \bigg)

Here,

In 1st infinite GP :

  • a = x
  • r = x

In 2nd infinite GP :

  • a = 1/y
  • r = 1/y

Substituting the values in formula

 \implies \sf \dfrac{2}{3}    = \dfrac{x}{1 - x} -   \dfrac{ \dfrac{1}{y} }{1 -  \dfrac{1}{y} }

 \implies \sf \dfrac{2}{3}    = \dfrac{x}{1 - x} -   \dfrac{ \dfrac{1}{y} }{ \dfrac{y - 1}{y} }

 \implies \sf \dfrac{2}{3}    = \dfrac{x}{1 - x} -   \dfrac{1}{y - 1}

Taking LCM

 \implies \sf \dfrac{2}{3}    = \dfrac{x(y - 1) - 1(1 - x)}{(1 - x)(y - 1)}

 \implies \sf \dfrac{2}{3}    = \dfrac{xy - x - 1 + x}{1 (y - 1)- x(y - 1)}

 \implies \sf \dfrac{2}{3}    = \dfrac{xy - 1}{y - 1- xy  +  x}

 \implies \sf \dfrac{2}{3}    = \dfrac{2- 1}{y - 1- 2 +  x}

 \implies \sf \dfrac{2}{3}    = \dfrac{1}{x + y - 3 }

==> 2x + 2y - 6 = 3

==> 2x + 2( 2/x ) - 6 - 3 = 0

[ Since y = 2/x ]

==> 2x + 4/x - 9 = 0

==> 2x² - 9x + 4 = 0

==> 2x² - 8x - x + 4 = 0

==> 2x(x - 4) - 1(x - 4) = 0

==> (2x - 1)(x - 4) = 0

==> 2x - 1 = 0 or x - 4 = 0

==> 2x = 1 or x = 4

==> x = 1/2 or x = 4

Since x < 1

==> x = 1/2

When x = 1/2

==> y = 2/x = 2/ ( 1/2 ) = 4

Therefore the value of x and y are 1/2, 4, respectively.

Similar questions