Math, asked by Sanskarbro2211, 1 month ago

values of x satisfying the equation 10^\frac{2}{x}+25^\frac{1}{x}=4.25*50^\frac{1}{x}

Answers

Answered by user0888
53

\large\text{\underline{Basics}}

\red{\text{Laws of Indices}}

\purple{\bigstar\ (ab)^{n}=a^{n}b^{n}}

\implies10^{\frac{2}{x}}=2^{\frac{2}{x}}\times5^{\frac{2}{x}}

\implies50^{\frac{1}{x}}=2^{\frac{1}{x}}\times5^{\frac{2}{x}}

\bigstar\ \purple{(a^{m})^{n}=a^{mn}}

\implies 25^{\frac{1}{x}}=(5^{2})^{\frac{1}{x}}=5^{\frac{2}{x}}

\large\text{\underline{Solution}}

\implies2^{\frac{2}{x}}\times5^{\frac{2}{x}}+5^{\frac{2}{x}}=\dfrac{17}{4}\times2^{\frac{1}{x}}\times5^{\frac{2}{x}}

Dividing both sides by 5^{\frac{2}{x}}, we eliminate the common factor;

\implies 2^{\frac{2}{x}}+1=\dfrac{17}{4}\times2^{\frac{1}{x}}

Let's take substitution of 2^{\frac{1}{x}}=t;

\implies t^{2}+1=\dfrac{17}{4}t

\implies 4t^{2}+4=17t

\implies4t^{2}-17t+4=0

However,

\implies (4t-1)(t-4)=0

\implies t=\dfrac{1}{4}\text{ or }t=4

Again, taking substitution of 2^{\frac{1}{x}}=t;

\implies2^{\frac{1}{x}}=2^{-2}\text{ or }2^{\frac{1}{x}}=2^{2}

We compare the exponents now;

\implies \dfrac{1}{x}=-2\text{ or }\dfrac{1}{x}=2

\implies x=-\dfrac{1}{2}\text{ or }x=\dfrac{1}{2}

\large\text{\underline{Conclusion}}

The value that satisfies the equation is x=-\dfrac{1}{2}\text{ or }x=\dfrac{1}{2}.

Similar questions