Math, asked by pratikpd2391, 2 months ago

Variable separable form:
dy/dx=x(2logx+1)/siny+ycosy​

Answers

Answered by devanayan2005
11

Answer:

ysiny=x^{2} .logx+c

Step-by-step explanation:

Variable separable form:

dy/dx=x(2logx+1)/siny+ycosy

(siny +ycosy)dy= [x(2logx+1)]dx

Now, we need to integrate both the sides.

\int\limits sin y.dy +\int\limits cos y.dy

\int\limits 2x . logxdx +\int\limits xdx

-cosx y + ysiny + cosy =x^{2} logx-\frac{x^{2} }{2} +\frac{x^{2} }{2} +c

ysiny=x^{2} .logx+c

Hope helps!

Similar questions