Math, asked by ashrafshah486, 4 months ago

Variance for 65,77,81,98,100,80,129

350

333

380

280​

Answers

Answered by khameswarc
0

Step-by-step explanation:

hhhshshjhehhehopppppppp

Answered by mahnooromer6b
0

Step-by-step explanation:

65,77,80,81,98,100,129

Total number of observation are:

N = 7

So mean of observation are:

\mathbf{\bar{X}=\dfrac{\sum X_{i}}{N}}

X

ˉ

=

N

∑X

i

\mathbf{\bar{X}=\dfrac{65+77+80+81+98+100+129}{7}}

X

ˉ

=

7

65+77+80+81+98+100+129

\mathbf{\bar{X}=90}

X

ˉ

=90

Means mean of observation are 90.

\mathbf{Calculate \ \sum (X_{i}-\bar{X})^{2}}Calculate ∑(X

i

X

ˉ

)

2

:

\mathbf{\sum (X_{i}-\bar{X})^{2}}∑(X

i

X

ˉ

)

2

=(65-90)²+(77-90)²+(80-90)²+(81-90)²+(98-90)²+(100-90)²+(129-90)²= 2660

Standard deviation can be find by formula:

\mathbf{Standard\ Deviation\ (\sigma )=\sqrt{\dfrac{(\sum X_{i}-\bar{X})^{2}}{N}}}Standard Deviation (σ)=

N

(∑X

i

X

ˉ

)

2

\mathbf{Standard\ Deviation\ (\sigma )=\sqrt{\dfrac{2660}{7}}}Standard Deviation (σ)=

7

2660

\mathbf{Standard\ Deviation\ (\sigma )=\sqrt{380}}Standard Deviation (σ)=

380

\mathbf{Standard\ Deviation\ (\sigma )=19.49}Standard Deviation (σ)=19.49

So standard deviation of following observation are 19.49

Similar questions