Math, asked by Riyu30, 3 months ago

variance of binomial distribution is 3/4 and probability of failure is 3/4 then state the value of mean​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{Variance\;of\;binomial\;distribution\;is\;\dfrac{3}{4}}

\mathsf{and\;probability\;of\;failure\;is\dfrac{3}{4}}

\underline{\textbf{To find:}}

\textsf{Mean of binomial distruibution}

\underline{\textbf{Solution:}}

\mathsf{Variance=\dfrac{3}{4}}

\implies\mathsf{n\,p\,q=\dfrac{3}{4}}--------(1)

\mathsf{Probability\;of\;failure=\dfrac{3}{4}}

\implies\mathsf{q=\dfrac{3}{4}}-----------(2)

\textsf{Using (2) in (1), we get}

\implies\mathsf{n\,p\left(\dfrac{3}{4}\right)=\dfrac{3}{4}}

\implies\mathsf{n\,p=1}

\implies\boxed{\boxed{\mathsf{Mean=1}}}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{5cm}$\\\\\textbf{In a binomial distribution,}\\\\\mathsf{Mean=np}\\\\\mathsf{Variance=npq}\\\\\textsf{Here,\;n-number\;of\;trials}\\\\\textsf{p-probability of success}\\\\\textsf{q-probability of failure}\\\\$\end{minipage}}

Similar questions