Math, asked by limpi5861, 1 year ago

variance of first n odd natural numbers and



variance of first n even numbers

Answers

Answered by SHIVAANSHSINGH
32
odd variance=-(n2+1)/3
even variance=(n2-1)/3
Answered by Alcaa
6

The variance of first n odd natural numbers is \frac{n^{2}-1 }{3} .

The variance of first n even natural numbers is \frac{n^{2}-1 }{3} .

Step-by-step explanation:

We have to calculate the variance of first n odd natural numbers;

As we know that the formula for variance is given by;

    Variance, \sigma^{2}  =  \frac{\sum X_i^{2} }{n}- \bar X^{2}

The series of first n odd natural numbers is;

1, 3, 5, 7,........., (2n-1)

So, firstly mean of this series is calculated as;

    \bar X  =  \frac{1 + 3+5+......+(2n-1)}{n}

As we can see that the numerator is a series of an AP, so the sum of n terms of an AP is given as  S_n=\frac{n}{2}[2a+(n-1)d]

Here, a = 1 and d = 2

So,   \bar X = \frac{\frac{n}{2}[2\times 1+(n-1)\times 2] }{n}

        \bar X = \frac{\frac{n}{2}[2 + 2n-2] }{n}

        \bar X = \frac{n^{2}  }{n} = n

Now,  \sum X_i^{2} = 1^{2} +2^{2} +3^{2} +........+(2n-1)^{2}

We know that sum of squares of odd natural numbers is given by ;

       \sum X_i^{2}=\frac{n(2n+1)(2n-1)}{3}

Now, putting these values in variance formula we get;

               Variance, \sigma^{2}  =  \frac{n(2n+1)(2n-1)}{3n}-n^{2}

                                     =  \frac{4n^{2}-2n+2n-1 }{3}-n^{2}

                                     =  \frac{4n^{2}-3n^{2} -1 }{3}

                                     =  \frac{n^{2}-1 }{3}

So, the variance of first n odd natural numbers is \frac{n^{2}-1 }{3} .

  • Now, we will calculate the variance of first n even numbers;

The series of first n even natural numbers is;

2, 4, 6, 8,.........,2n

So, firstly mean of this series is calculated as;

    \bar X  =  \frac{2 +4+6+......+2n}{n}

As we can see that the numerator is a series of an AP, so the sum of n terms of an AP is given as  S_n=\frac{n}{2}[2a+(n-1)d]

Here, a = 2 and d = 2

So,   \bar X = \frac{\frac{n}{2}[2\times 2+(n-1)\times 2] }{n}

        \bar X = \frac{\frac{n}{2}[4 + 2n-2] }{n}

        \bar X = \frac{n(n+1)  }{n} = n + 1

Now,  \sum X_i^{2} = 2^{2} +4^{2} +6^{2} +........+(2n)^{2}

Taking 2^{2} common we get;

\sum X_i^{2} = 2^{2}[ 1^{2} +2^{2} +3^{2} +........+(n)^{2}]

We know that sum of squares of n natural numbers is given by ;

                    =  \frac{n(n+1)(2n+1)}{6}

So,  \sum X_i^{2} = \frac{4n(n+1)(2n+1)}{6}

Now, putting these values in variance formula we get;

               Variance, \sigma^{2}  =  \frac{4n(n+1)(2n+1)}{6n}-(n+1)^{2}

                                     =  \frac{2(n+1)(2n+1)}{3}-(n+1)^{2}

                                     =  \frac{n+1}{3} [2(2n+1)-3(n+1)]

                                     =  \frac{n+1}{3} [4n+2-3n-3]

                                     =   \frac{n+1}{3} (n-1)

                                     =  \frac{n^{2}-1 }{3}

So, the variance of first n even natural numbers is \frac{n^{2}-1 }{3} .

Similar questions