Physics, asked by sheetu855, 9 months ago

vector A*B is grater then 73% of vector A.B then what is the angle between them ​

Answers

Answered by shadowsabers03
9

Correct Question:-

If two vectors \vec{\sf{A}} and \vec{\sf{B}} are such that magnitude of \vec{\sf{A}}\times\vec{\sf{B}} is \sf{73\%} greater than \vec{\sf{A}}\cdot\vec{\sf{B}}, find angle between them.

Solution:-

The dot product of vectors \vec{\sf{A}} and \vec{\sf{B}} is given by,

\longrightarrow\vec{\sf{A}}\cdot\vec{\sf{B}}=\sf{AB\cos\theta}

And the cross product is given by,

\longrightarrow\vec{\sf{A}}\times\vec{\sf{B}}=\sf{AB\sin\theta}

According to the question,

\longrightarrow\vec{\sf{A}}\times\vec{\sf{B}}=\left(\vec{\sf{A}}\cdot\vec{\sf{B}}\right)\sf{\left[1+\dfrac{73}{100}\right]}

\longrightarrow\sf{AB\sin\theta=AB\cos\theta\times\dfrac{173}{100}}

\longrightarrow\sf{\sin\theta=\cos\theta\times1.73}

\longrightarrow\sf{\dfrac{\sin\theta}{\cos\theta}=1.73}

\longrightarrow\sf{\tan\theta=\sqrt3}

\longrightarrow\sf{\underline{\underline{\theta=60^o}}}

Hence the angle between them is 60°.

Similar questions