Vector u and v are orthogonal if and only if u⃗ .v⃗ =
Answers
Answered by
0
Answer:
If u,vu,v are orthogonal vectors, then:
∥u+v∥2=∥u∥2+∥v∥2‖u+v‖2=‖u‖2+‖v‖2
∥u−v∥2=∥u∥2+∥−v∥2=∥u∥2+∥v∥2‖u−v‖2=‖u‖2+‖−v‖2=‖u‖2+‖v‖2
now ∥u+v∥2=∥u−v∥2‖u+v‖2=‖u−v‖2, but the norm is ever positive therefore: ∥u+v∥=∥u−v∥‖u+v‖=‖u−v‖.
=> Now, if ∥u+v∥=∥u−v∥‖u+v‖=‖u−v‖ we have:
∥u+v∥2=∥u∥2+2u⋅v+∥v∥2‖u+v‖2=‖u‖2+2u⋅v+‖v‖2
∥u−v∥2=∥u∥2−2u⋅v+∥v∥2
Step-by-step explanation:
mark me as brainliest
Similar questions