Science, asked by rajamonishireesha, 6 months ago

VECTORS
Two vectors a and b have equal magnitudes of
12 units. These vectors are making angles 30°
and 120° with the x axis respectively. Their sum
is F. Find the x and y components of i​

Answers

Answered by Bᴇʏᴏɴᴅᴇʀ
5

Correct Question:-

Two vectors a and b have equal magnitudes of 12 units. These vectors are making angles 30° and 120° with the x axis respectively. Their sum is r. Find the x and y components of r.

Answer:-

\red{\bigstar} X component of r \large\leadsto\boxed{\rm\purple{6(\sqrt{3}-1)}}

\red{\bigstar} Y component of r \large\leadsto\boxed{\rm\purple{6(\sqrt{3}+1)}}

Solution:-

\pink{\bf{Vector \: A:-}}

Magnitude = 12 units

Angle = 30°

\sf A_x = 12 cos 30^{\circ}

\sf A_x = 12  \times \dfrac{\sqrt{3}}{2}

\bf A_x = 6 \sqrt{3} \hat{i}

\sf A_y = 12 sin 30^{\circ}

\sf A_y = 12 \times \dfrac{1}{2}

\bf A_y = 6 \hat{j}

\large\boxed{\green{\vec{A} = 6\sqrt{3}\hat{i} + 6\hat{j}}}

\pink{\bf{Vector \: B:-}}

Magnitude = 12 units

Angle = 120°

\sf B_x = 12 cos 120^{\circ}

\sf B_x = 12  \times \dfrac{-1}{2}

\bf B_x = -6 \hat{i}

\sf B_y = 12 sin 120^{\circ}

\sf B_y = 12 \times \dfrac{\sqrt{3}}{2}

\bf B_y = 6 \sqrt{3}\hat{j}

\large\boxed{\green{\vec{B} = -6\hat{i} + 6\sqrt{3}\hat{j}}}

\pink{\bf{Vector \: R:-}}

\sf \vec{R} = \vec{A} + \vec{B} \\

\sf \vec{R} = (6\sqrt{3} \hat{i} + 6 \hat{j}) + (-6 \hat{i} + 6 \sqrt{3} \hat{j}) \\

\large\boxed{\red{\vec{R} = 6(\sqrt{3} - 1) \hat{i} + 6(\sqrt{3} + 1) \hat{j}}}

Therefore,

x component = 6(3-1)

y component = 6(3 + 1)

Similar questions