Physics, asked by deveshth123, 1 year ago

velocity of 90 km per hour then the brakes are applied the retardation produced is 0.5 m per second square find the velocity after 10 seconds and the time taken by the train to come to rest

Answers

Answered by Rosedowson
0
Hi..
Hope this helps u!!
Attachments:
Answered by jeffwin18
0

Answer:

Answer:−

\sf{v=20\;m/s}v=20m/s

\sf{t=50\;s}t=50s

{\mathfrak{\purple{\underline{\underline{Explanation:-}}}}}

Explanation:−

Given:-

\sf{u=90\;km/hr = 90\times\dfrac{5}{18} =25\;m/s.}u=90km/hr=90×

18

5

=25m/s.

\sf{t=10\;s.}t=10s.

\sf{a=-0.5\;m/s^{2}}a=−0.5m/s

2

\sf{By\;using\;1st\;equation\;of\;motion,}Byusing1stequationofmotion,

\sf{v=u+at}v=u+at

\sf{v=25-\dfrac{5}{10} \times 10 = 25-5=20\;m/s.}v=25−

10

5

×10=25−5=20m/s.

{\boxed{\boxed{\bf{v=20\;m/s}}}}

v=20m/s

Now,

\sf{u=25\;m/s.}u=25m/s.

\sf{v=0}v=0

\sf{a=-0.5\;m/s^{2}}a=−0.5m/s

2

\sf{t=?}t=?

\sf{By\;using\;1st\;equation\;of\;motion,}Byusing1stequationofmotion,

\sf{v=u+at}v=u+at

\sf{0=25-\dfrac{5}{10} \;t}0=25−

10

5

t

{\boxed{\boxed{\bf{t=50\;s}}}}

t=50s

Similar questions