Physics, asked by Harshith098, 11 months ago

Velocity of a car as function of time is given by vx(t)=α+βt2, where α=3.00ms−1 and β=0.100ms−3. The average acceleration for the time interval t = 0 and t = 5s is

Answers

Answered by Anonymous
2

Answer:

The time interval (t) varies from one instance to another, on which the values of velocity and the average acceleration depend.

If t = 0, vx(t) = vx (0) = 0, thus the average acceleration is also calculated to be 0.

Answered by darshanradha3
0

Answer:

0.5 ms^{-2}

Explanation:

         Formula :

                          Average acceleration =\frac{v_2-v_1}{t_2-t_1}

         v_{x}(t)=\alpha +\beta t^{2}

         Let time t_{1} = 0s  and time t_{2} = 5s

         \alpha =3.00ms^{-1}            \beta = 0.100ms^{-3}

         v_{1}(at t = 0s) = 3 + (0.1)(0^{2})  

     

         v_{1}(at t = 0s) = 3ms^{-1}--------> Equation-1

         v_{2}(at t= 5s) = 3 + (0.1)(5^2)    

          v_{2}(at t= 5s) = 5.5ms^-1--------> Equation-2

           THEREFORE :

        Average acceleration =\frac{v_2-v_1}{t_2-t_1}

                                              =\frac{5.5-3}{5-0}

                                              =\frac{2.5}{5}

         Average acceleration =0.5ms^{-2}

                                        HOPE YOU UNDERSTOOD

                                                   THANK YOU

Similar questions