Chemistry, asked by khushihappy907, 7 hours ago

verification of a saturated and unsaturated solution by taking two different solute ( common salt & sugar ) by an experiment​

Answers

Answered by gudcreations2020
0

Answer:

Objective: The goal of this project is to measure the solubilities of some common chemicals: Table salt (NaCl) Epsom salts (MgSO4) sugar (sucrose, C12H22O11). Introduction A good part of the substances we deal with in daily life, such as milk, gasoline, shampoo, wood, steel and air are mixtures. When the mixture is homogenous, that is to say, when its components are intermingled evenly, it is called a solution. There are various types of solutions, and these can be categorized by state (gas, liquid, or solid). The chart below gives some examples of solutions in different states. Many essential chemical reactions and natural processes occur in liquid solutions, particularly those containing water (aqueous solutions) because so many things dissolve in water. In fact, water is sometimes referred to as the universal solvent. The electrical charges in water molecules help dissolve different kinds of substances. Solutions form when the force of attraction between solute and solvent is greater than the force of attraction between the particles in the solute. Two examples of such important processes are the uptake of nutrients by plants, and the chemical weathering of minerals. Chemical weathering begins to take place when carbon dioxide in the air dissolves in rainwater. A solution called carbonic acid is formed. The process is then completed as the acidic water seeps into rocks and dissolves underground limestone deposits. Sometimes, the dissolving of soluble minerals in rocks can even lead to the formation of caves. If one takes a moment to consider aqueous solutions, one quickly observes that they exhibit many interesting properties. For example, the tap water in your kitchen sink does not freeze at exactly 0°C. This is because tap water is not pure water; it contains dissolved solutes. Some tap water, commonly known as hard water, contains mineral solutes such as calcium carbonate, magnesium sulfate, calcium chloride, and iron sulfate. Another interesting solution property is exhibited with salt and ice. Another example comes from the fact that salt is spread on ice collected on roads in winters. When the ice begins to melt, the salt dissolves in the water and forms salt water. The reason is that with the adition of salt the melting point of water increases and as aresult the snow melts away faster. Even some organisms have evolved to survive freezing water temperatures with natural "antifreeze." Certain arctic fish have blood containing a high concentration of a specific protein. This protein behaves like a solute in a solution and lowers the freezing point of the blood. Going to the other end of the spectrum, one can also observe that the boiling point of a solution is affected by the addition of a solute. These two properties, namely freezing-point depression and boiling-point elevation, are called colligative properties (properties that depend on the number of molecules, but not on their chemical nature). Basic Concepts A saturated solution is a mixture in which no more solute can be practically dissolved in a solvent at a given temperature. It is said practical because theoretically infinite amount of solute can be added to a solvent, but after a certain limit the earlier dissolved solute particles start rearranging and come out at a constant rate. Hence overall it appears that no solute is dissolved after a given amount of solute is dissolved. This is known as a saturated solution. In an unsaturated solution, if solute is dissolved in a solvent the solute particles dissociate and mix with the solvent without the re-arrangement of earlier dissolved solute particles. Solubility depends on various factors like the Ksp of the salt, bond strength between the cation and anion, covalency of the bond, extent of inter and intramolecular hydrogen bonding, polarity, dipole moment etc. Out of these the concepts of H-bonding, covalency, ionic bond strength and polarity play a major role if water is taken as a solvent. Also physical conditions like temperature and pressure also play very important roles as they affect the kinetic energy of the molecules. Materials and Equipment To do this experiment following materials and equipment are required: •Distilled water •Metric liquid measuring cup (or graduated cylinder) •Three clean glass jars or beakers •Non-iodized table salt (NaCl) •Epsom salts (MgSO4) •Sugar (sucrose, C12H22O11) •Disposable plastic spoons •Thermometer •Three shallow plates or saucers •Oven •Electronic kitchen balance (accurate to 0.1 g) Experimental

hope it helps

Similar questions