Math, asked by indrajsingh39600, 10 months ago

Verification of the relationship between the zeroes and the coefficients :

\sf{Sum \: \: of \: \: the \: \: roots = \dfrac{ -coefficient \: of \: x}{coefficient \: \: of \: \: {x}^{2} } }Sumoftheroots=coefficientofx2−coefficientofx​

\begin{lgathered}\implies \sf \dfrac{1}{2} + \dfrac{1}{2} = \dfrac{ - ( - 4)}{4} \\ \\ \sf\implies \dfrac{1 + 1}{2} = \dfrac{4}{4} \\ \\ \implies \sf \dfrac{2}{2} = \dfrac{4}{4} \\ \\ \bf\implies1 = 1\end{lgathered}⟹21​+21​=4−(−4)​⟹21+1​=44​⟹22​=44​⟹1=1​

Again :

\sf{Product \: \: of \: \: the \: roots \: = \dfrac{constant \: term}{coefficient \: \: of \: \: {x}^{2} } }Productoftheroots=coefficientofx2constantterm​

\begin{lgathered}\sf \implies \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4} \\ \\ \bf \implies \dfrac{1}{4} = \dfrac{1}{4}\end{lgathered}⟹21​×21​=41​⟹41​=41​​

\bold{Hence \: \: Verified}HenceVerified​

Answers

Answered by amanraj143
2

Step-by-step explanation:

bro kya coding hai

coding kam hi nahi kiya

xD

Answered by Sambhavs
8

Answer:

\sf : \implies Simple \: interest = \dfrac{2400\cancel{00}}{1\cancel{00}}

Similar questions