Verification of the relationship between the zeroes and the coefficients :
\sf{Sum \: \: of \: \: the \: \: roots = \dfrac{ -coefficient \: of \: x}{coefficient \: \: of \: \: {x}^{2} } }Sumoftheroots=coefficientofx2−coefficientofx
\begin{lgathered}\implies \sf \dfrac{1}{2} + \dfrac{1}{2} = \dfrac{ - ( - 4)}{4} \\ \\ \sf\implies \dfrac{1 + 1}{2} = \dfrac{4}{4} \\ \\ \implies \sf \dfrac{2}{2} = \dfrac{4}{4} \\ \\ \bf\implies1 = 1\end{lgathered}⟹21+21=4−(−4)⟹21+1=44⟹22=44⟹1=1
Again :
\sf{Product \: \: of \: \: the \: roots \: = \dfrac{constant \: term}{coefficient \: \: of \: \: {x}^{2} } }Productoftheroots=coefficientofx2constantterm
\begin{lgathered}\sf \implies \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4} \\ \\ \bf \implies \dfrac{1}{4} = \dfrac{1}{4}\end{lgathered}⟹21×21=41⟹41=41
\bold{Hence \: \: Verified}HenceVerified
Answers
Answered by
2
Step-by-step explanation:
bro kya coding hai
coding kam hi nahi kiya
xD
Answered by
8
Answer:
Similar questions
English,
5 months ago
Math,
5 months ago
Social Sciences,
10 months ago
English,
10 months ago
Computer Science,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago