Math, asked by ashamonikakati, 1 year ago

verify:

(-1,2,1) , (1,-2,5) (4, -7,8) and (2,-3,4) are the vertics of parrallelogram.​


143jiiii: hloo dear

Answers

Answered by Ponnuaug
1

Answer:

Step-by-step explanation:

First consider the vertices as A B C and D.

Then, using distance formula find the distance of AB BC CD and AD.

Then you will get two sides equal and the other to sides also equal distance.

Therefore ABCD is a parallelogram.

Answered by Anonymous
9

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

Assumption

{\boxed{\sf\:{Points\;be\;PQRS}}}

Hence,

PQ = √{(1 + 1)² + (-2 - 2)² + (5 - 1)²}

PQ = √{(2)² + (-4)² + (4)²}

PQ = √(4 + 16 + 16)

PQ = √20 + 16

PQ = √36

PQ = 6

\textbf{\underline{Here\;we\;get:-}}

PQ = 6

Now,

QR = √{(4 - 1)² + (-7 + 2)² + (8 - 5)²}

QR = √{(3)² + (-5)² + (3)²}

QR = √(9 + 25 + 9)

QR = √43

\textbf{\underline{Here\;we\;get:-}}

QR = √43

Now,

RS = √{(2 - 4)² + (-3 + 7)² + (4 - 8)²}

RS = √{(-2)² + (4)² + (-4)²}

RS = √(4 + 16 + 16)

RS = √(20 + 16)

RS = √36

RS = 6

\textbf{\underline{Here\;we\;get:-}}

RS = 6

Now,

SP = √{(-1 - 2)² + (2 + 3)² + (1 - 4)²}

SP = √{(-3)² + (5)² + (-3)²}

SP = √(9 + 25 + 9)

SP = √43

\textbf{\underline{Here\;we\;get:-}}

SP = √43

Therefore,

PQ = RS = 6

QR = SP = √43

Opposite sides of quadrilateral PQRS are equal

Hence,

PQRS is a parallelogram

Similar questions