Math, asked by itzbandariya, 4 months ago

Verify :-

1)
x³ + y³ = (x + y)(x {}^{2}  - xy  + y {}^{2})


2)
x³  -  y³ = (x  -  y)(x {}^{2}  + xy  + y {}^{2})


⚠️Kindly don't spam⚠️ - Non copied answer - well explained answer

Answers

Answered by Anonymous
24

Answer:

Find:-

Verify the following

  • x³+y³=(x+y) (x²-xy+y²)
  • x³-y³ = (x-y) (x²+xy+y²)

Solution:-

1) x³+y³= (x-y) (x²-xy+y²)

We know that

{ \boxed{ \sf{ {(x + y)}^{3} =  {x}^{3}   +  {y}^{3}  + 3xy(x + y)}}}

So, x³+y³= (x+y) ³-3xy(x+y)

{ \to{ \sf{  {(x + y)}^{3 }  - 3xy(x + y) }}}

{ \to{ \sf{(x + y)( {(x + y)}^{2} - 3xy) }}}

From identity

{ \boxed{ \sf{ {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}}}

{ \to{ \sf{(x + y)(( {x}^{2} +  {y}^{2}  + 2xy) - 3xy) }}}

{ \to{ \sf{(x + y)( {x}^{2} +  {y}^{2} - xy)  }}}

{ \to{ \sf{(x + y)( {x}^{2}  - xy +  {y}^{2} )}}}

{ \therefore{ \sf{LHS  = RHS}}}

2) x³-y³= (x-y) (x²+x-y+y²)

We know that

{ \boxed{ \sf{ {(x - y)}^{3} =  {x}^{3}  -  {y}^{3}   - 3xy(x - y)}}}

{ \to{ \sf{ {x}^{3}  -  {y}^{3}  =  {(x - y)}^{3} + 3xy(x - y) }}}

{ \to{ \sf{ {(x - y)}^{3} + 3xy(x - y) }}}

{ \to{ \sf{(x - y)( {(x - y)}^{2} + 3xy) }}}

{ \to{ \sf{(x - y)(( {x}^{2}  +  {y}^{2} - 2xy) + 3xy }}}

{ \to{ \sf{(x - y)( {x}^{2} +  {y}^{2}   +  xy)}}}

{ \to{ \sf{(x - y)( {x}^{2} + xy +  {y}^{2}  )}}}

{ \therefore{ \sf{LHS =  RHS}}}

Hence, proved.

Answered by Anonymous
33

 \bf \bigstar \underline \red{Solution :-</p><p> }

1)  \boxed{{ \purple{x³ + y³ = (x + y)(x {}^{2}  - xy + y {}^{2} )}}}</p><p>

→(x + y)³ = x³ +  y³ + 3xy \: (x + y)

→(x + y)³ - 3xy(x + y) = x³ + y³

→(x + y)[(x + y) {}^{2}  - 3xy] = x³ + y³

→(x + y)[x {}^{2}  + y {}^{2}  + 2xy - 3xy] = x³ + y³

→(x + y)[x {}^{2}  + y {}^{2}  - xy] = x³ + y³

 \boxed{\purple{x³ + y³ = (x + y)[x {}^{2}  + y {}^{2}  - xy]}}

 \bf{ \boxed {\bold{Hence  \: proved✔}}}

━━━━━━━━━━━━━━━━━━━━━

2) \boxed{ \purple{x³ - y³  = (x - y)(x {}^{2} + xy + y {}^{2}}}

→(x - y)³ = x³ - y³ - 3xy(x - y)

→(x - y)³ + 3xy(x - y)=x³ - y³

→(x  -  y)[(x  -  y) {}^{2} + 3xy] = x³  -  y³

→(x  -  y)[x {}^{2}  + y {}^{2}   -  2xy  +  3xy] = x³  -  y³

→(x  -  y)[x {}^{2}  + y {}^{2}   +  xy] = x³  -  y³

 \boxed{\purple{x³  - y³ = (x  - y)[x {}^{2}  + y {}^{2}   + xy]}}

 \bf{ \boxed {\bold{Hence  \: proved✔}}}

Similar questions