Math, asked by kavitapatil0825, 2 months ago

verify a -(b) = a+ b for the following values of a and b a)a= 118,b= 125​

Answers

Answered by ItzMeMukku
11

Answer:

The expression a-(-b)=a+ba−(−b)=a+b is verified from the given values of a and b.

Solution:

Given that

\begin{gathered}\begin{array} { l } { a - ( - b ) = a + b } \\\\ { ( i ) } \\\\ { a = 21 , b = 18 } \\\\ { L H S = a - ( - b ) = 21 - ( - 18 ) } \\\\ { = 21 + 18 } \\\\ { a - ( - b ) = 39 } \\\\ { R H S = a + b = 21 + 18 = 39 } \end{array}\\\end{gathered}

\begin{gathered}\begin{array} { l } { \text { (ii) } } \\\\ { \mathrm { a } = 118 , \mathrm { b } = 125 } \\\\ { \mathrm { LHS } = \mathrm { a } - ( - \mathrm { b } ) = 118 - ( - 125 ) } \\\\ { = 118 + 125 } \\\\ { \mathrm { a } - ( - \mathrm { b } ) = 243 } \\\\ { \mathrm { RHS } = \mathrm { a } + \mathrm { b } = 118 + 125 = 243 } \end{array}\end{gathered}

\begin{gathered}\begin{array} { l } { \text { (iii) } } \\\\ { \mathrm { a } = 75 , \mathrm { b } = 84 } \\\\ { \mathrm { LHS } = \mathrm { a } - ( - \mathrm { b } ) = 75 - ( - 84 ) } \\\\ { = 75 + 84 } \\\\ { a - ( - b ) = 159 } \\\\ { R H S = a + b = 75 + 84 = 159 } \end{array}\end{gathered}

\begin{gathered}\begin{array} { l } { \text { (iv) } } \\\\ { \mathrm { a } = 28 , \mathrm { b } = 11 } \\\\ { \mathrm { LHS } = \mathrm { a } - ( - \mathrm { b } ) = 28 - ( - 11 ) } \\\\ { = 28 + 11 } \\\\ { \mathrm { a } - ( - \mathrm { b } ) = 39 } \\\\ { \mathrm { RHS } = \mathrm { a } + \mathrm { b } = 28 + 11 = 39 } \end{array}\end{gathered}

Hence, in all the terms we can find that the LHS is equal to the RHS.

Hence a-(-b)=a+ba−(−b)=a+b is verified.

Similar questions