verify a + b = b + a where a = 2/ 3 b = -5 / 6
Answers
Step-by-step explanation:
Verification
\:
a = -2
\:
b = - 2/3
\:
c = -3/4 14 = -45/4
\:
(a + b) +c = a +(b + c)
\:
Swipe right to left to view
\:
\large \rm⇒ \: \left( - 2 + \dfrac{ - 2}{3} \right) + \dfrac{ - 45}{4} = - 2 + \left( \dfrac{ - 2}{3} + \dfrac{ - 45}{4} \right)⇒(−2+
3
−2
)+
4
−45
=−2+(
3
−2
+
4
−45
)
\:
\:
\large \rm⇒ \: \left( \dfrac{ - 6 - 2}{3} \right) + \dfrac{ - 45}{4} = - 2 + \left( \dfrac{ - 8- 135}{12} \right)⇒(
3
−6−2
)+
4
−45
=−2+(
12
−8−135
)
\:
\:
\large \rm⇒ \: \left( \dfrac{ - 8}{3} \right) + \dfrac{ - 45}{4} = - 2 + \left( \dfrac{ - 143}{12} \right)⇒(
3
−8
)+
4
−45
=−2+(
12
−143
)
\:
\:
\large \rm⇒ \: \dfrac{ - 32 - 135}{12} = \dfrac{ - 24- 143}{12}⇒
12
−32−135
=
12
−24−143
\:
\:
\boxed{ \large \rm \therefore \: \dfrac{ - 167}{12} = \dfrac{ - 167}{12} }
∴
12
−167
=
12
−167
Answer:
Step-by-step explanation:
LHS=2/3+(-5/6)
2/3-5/6
4-5/6
-1/6
RHS=-5/6+2/3
-5+4/6
-1/6
LHS=RHS
hence proved