Math, asked by shehacshalu, 1 month ago

Verify : a(b+c) = ab + ac, where a = -1/5, b = 4/7, c = -3/2​

Answers

Answered by BlessedOne
26

Given :

  • \sf\:a~=~\frac{-1}{5}

  • \sf\:b~=~\frac{4}{7}

  • \sf\:c~=~\frac{-3}{2}

To :

  • Verify whether a ( b+c ) = ab + ac

Concept :

For this question we need to plug the value of a, b and c in a ( b+c ) = ab + ac. Doing so and proceeding with simple calculations if we get LHS = RHS , our equation would be verified.

Hope itz clear let's proceed !~

Solution :

\bf\color{maroon}{⋆} \sf\:a(b+c) =ab+ac

Plugging the given values of a, b and c

\sf\implies\:\frac{-1}{5}[\frac{4}{7}+(\frac{-3}{2}) ]=(\frac{-1}{5} \times \frac{4}{7}) +( \frac{-1}{5} \times \frac{-3}{2})

\sf\implies\:\frac{-1}{5}[\frac{4}{7}-\frac{3}{2}]=(\frac{-1}{5} \times \frac{4}{7}) +( \frac{-1}{5} \times \frac{-3}{2})

  • Calculating LCM of 7 and 2 in LHS = 14
  • Multiplying the numbers in RHS

\sf\implies\:\frac{-1}{5}[\frac{(2 \times 4)-(7 \times 3)}{14}]=(\frac{-4}{35}) +(\frac{3}{10})

\sf\implies\:\frac{-1}{5}[\frac{8-21}{14}]=\frac{-4}{35}+\frac{3}{10}

\sf\implies\:\frac{-1}{5}[\frac{-13}{14}]=\frac{-4}{35}+\frac{3}{10}

\sf\implies\:\frac{-1}{5} \times \frac{-13}{14}=\frac{-4}{35}+\frac{3}{10}

\sf\implies\:\frac{13}{70}=\frac{-4}{35}+\frac{3}{10}

  • Calculating LCM of 35 and 10 in RHS = 70

\sf\implies\:\frac{13}{70}=\frac{[2 \times (-4)] + (7 \times 3)}{70}

\sf\implies\:\frac{13}{70}=\frac{(-8) + 21}{70}

\sf\implies\:\frac{13}{70}=\frac{13}{70}

\bf\implies\:LHS~=~RHS

Hence Verified !~

════════════════════

Similar questions