.Verify all four identities by multiplication of binomials.
Answers
Given : identities (a + b)² = a² + b² + 2ab , (a - b)² = a² + b² - 2ab , (-a - b)² = a² + b² + 2ab , (a + b)(a-b) = a² - b²
To Find : Verify by multiplication
Solution:
(a + b)² = a² + b² + 2ab
(a + b)² = (a + b) (a + b)
using distributive property
a(a + b) + b(a + b)
= a² + ab + ba + b²
ba = ab
= a² + ab + ab + b²
= a² + 2ab + b²
= a² + b² + 2ab
QED
(a - b)² = a² + b² - 2ab
(a - b)² = (a - b) (a - b)
using distributive property
a(a - b) - b(a - b)
= a² - ab - ba + (-b)(-b)
= a² - ab - ba + b²
= a² - ab - ab + b²
= a² - 2ab + b²
= a² + b² - 2ab
(-a - b)² = a² + b² + 2ab
(-a - b)² = (-a -b) (-a - b)
using distributive property
-a(-a - b) - b(-a - b)
= a² + ab + ba + b²
= a² + 2ab + b²
= a² + b² + 2ab
QED
(a + b)(a-b) = a² - b²
(a + b)(a-b) = a(a - b) + b(a - b)
= a² - ab + ba - b²
= a² - b²
QED
Learn more
Question 1Use a suitable identity to get each of the following ...
https://brainly.in/question/7366325
Gram panchayat of village Balipur District Mathura decided to ...
https://brainly.in/question/13328730
- Given : identities (a + b)² = a² + b² + 2ab , (a - b)² = a² + b² - 2ab , (-a - b)² = a² + b² + 2ab , (a + b)(a-b) = a² - b²
- To Find : Verify by multiplication.
- Solution: (a + b)² = a² + b² + 2ab. (a + b)² = (a + b) (a + b) using distributive property. a(a + b) + b(a + b) = a² + ab + ba + b² ba = ab. = a² + ab + ab + b²
- , (a + b)2 = a2 + 2ab + b2
- (a – b)2 = a2 – 2ab + b2
- a2 – b2 = (a + b)(a – b)
- (x + a)(x + b) = x2 + (a + b) x + ab
- (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
- (a + b)3 = a3 + b3 + 3ab (a + b)
- (a – b)3 = a3 – b3 – 3ab (a – b)
- a3 + b3 + c3– 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)