Math, asked by vanshikasharma3260, 2 months ago

Verify associative law
a+ (b+c) =(a+b) +c
Where a= 7/5, b= -2/5, c= -1/3​

Answers

Answered by CuteAnswerer
15

GIVEN :

  • a =  \bf {\dfrac{7}{5}}

  • b= \bf {\dfrac{-2}{5}}

  • c =  \bf{\dfrac{-1}{3}}

TO DO :

  • Verify associative law : \bf {a+(b+c) =(a+b) +c} .

SOLUTION :

 \bf{LHS = a+(b+c)}

  • Substituting the given values :

 :  \longrightarrow\sf{LHS = a + (b  + c)} \\  \\

 :   \longrightarrow\sf{LHS =  \dfrac{7}{5}  +  \left( \dfrac{ - 2}{5}   +  \dfrac{ -1 }{3}  \right)} \\  \\

: \longrightarrow\sf{LHS =  \dfrac{7}{5}  +  \left( \dfrac{ - 6 + ( - 5)}{15}  \right)} \\  \\

: \longrightarrow\sf{LHS =  \dfrac{7}{5}  +  \left( \dfrac{ - 6  - 5}{15}  \right)} \\  \\

 : \longrightarrow\sf{LHS =  \dfrac{7}{5}  +  \dfrac{ - 11}{15}  } \\  \\

 : \longrightarrow\sf{LHS =  \dfrac{21 + ( - 11)}{15}  } \\  \\

 :  \longrightarrow\sf{LHS =  \dfrac{21 - 11}{15}  } \\  \\

:  \longrightarrow\sf{LHS =   \dfrac{\cancel{10}}{ \cancel{15}}  } \\  \\

 :  \longrightarrow \underline{\boxed{ \purple {\bf{LHS =  \dfrac{2}{3}}} }}

 \bf{RHS = (a+b) +c}

  • Substituting the given values :

 :  \longrightarrow\sf{RHS =( a + b ) + c} \\  \\

 :   \longrightarrow\sf{RHS =  \left( \dfrac{ 7}{5}   +  \dfrac{ -2}{5}  \right) + \dfrac{ - 1}{3}   } \\  \\

: \longrightarrow\sf{RHS =     \left( \dfrac{ 7 + ( - 2)}{5}  \right) + \dfrac{ - 1}{3} } \\  \\

: \longrightarrow\sf{RHS =      \left( \dfrac{ 7  - 2}{5}  \right) + \dfrac{ - 1}{3}} \\  \\

 : \longrightarrow\sf{RHS =      \left(  \cancel{\dfrac{ 5}{5}}  \right) + \dfrac{ - 1}{3}} \\  \\

 : \longrightarrow\sf{RHS =  1+  \dfrac{ - 1}{3}  } \\  \\

 : \longrightarrow\sf{RHS =  \dfrac{3 + ( - 1)}{3}  } \\  \\

 :  \longrightarrow\sf{RHS =  \dfrac{3 - 1}{3}  } \\  \\

 :  \longrightarrow \underline{\boxed{ \purple {\bf{RHS =  \dfrac{2}{3}}} }}

Here,

 :  \longrightarrow \underline{\huge{\boxed{ \green {\bf{LHS =  RHS }}}}}

\huge {\pink {\therefore}} Verified.


ItzArchimedes: Awesome !
Similar questions