Math, asked by preshita21, 5 months ago

Verify Cauchy's mean value theorem for f(x)=ln x and g(x) =1/x , where x belongs to [1,e]​

Answers

Answered by mathdude500
0

Answer:

 \boxed{\bf \:  \:  c  =\dfrac{e}{e - 1}  \: \in \:  (1,e) \:  \: }   \\

Step-by-step explanation:

Given that,

\sf \: f(x) = ln(x) \:  \:  \: x \:  \in \: [ 1,e] \\

and

\sf \: g(x) = \dfrac{1}{x}  \:  \:  \: x \:  \in \: [ 1,e] \\

Now,

\sf \: f(x) \: and \: g(x) \: are \: continuous \: functions \:on \:  \: x \:  \in \: [ 1,e] \\

Now,

\sf \: f'(x) = \dfrac{1}{x} \\

and

\sf \: g'(x)  \: =  \: -  \:  \dfrac{1}{ {x}^{2} } \\

So,

\sf \: f(x) \: and \: g(x) \: are \: differentiable \: functions \:on \:  \: x \:  \in \: ( 1,e)\\

So, Cauchy's mean value theorem is applicable.

Therefore, there exist atleast one real number c \in (1, e) such that

\sf \: \dfrac{f'(c)}{g'(c)} = \dfrac{f(e) - f(1)}{g(e) - g(1)}  \\

\sf \: \dfrac{\dfrac{1}{c} }{ - \dfrac{1}{ {c}^{2} } }  = \dfrac{ln(e) - ln(1)}{\dfrac{1}{e}  - 1}  \\

\sf \:  - c  = \dfrac{1 - 0}{\dfrac{1 - e}{e}}  \\

\sf \:  - c  =\dfrac{e}{1 - e}   \\

\implies\sf \: \boxed{\sf \:  c  =\dfrac{e}{e - 1} \:  \in \:  (1,e)\: }   \\

Similar questions