Math, asked by medapatishanmuk, 5 months ago

Verify Cauchy's Mean Value Theorem for the following functions in the given intervals
i) f(x) = sqrt(x+9), g(x)= sqrt(x) in (0,16]
ii)f(x) = log x g(x) = 1/x [1,e]
iii) f(x) = sin x , g(x) = cos x in [a,b]

Answers

Answered by Alwayshelpme
4

Step-by-step explanation:

If Cot θ = 15/8. Evaluate

 \frac{2(1 + sin \: θ)(1 - sin \: \theta)}{(1 + cos  \: \theta)(2 - 2 \: cos \: \theta)}

Answered by hukam0685
1

Step-by-step explanation:

iii)Given :

f(x) = sin x and g(x)=cos x

To find: Verify Cauchy's mean value theorem for the function sin x and cos x in the interval [a, b]

Solution:

Cauchy's mean value theorem:

 \boxed{\bold{\pink{\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}}}} \\

Put the function and first order derivative in the formula

 \frac{sin \: b - sin \: a}{cos \: b - cos \: a} = \frac{cos \: c}{ - sin \: c} \\ \\ \frac{sin \: b - sin \: a}{cos \: b - cos \: a} = - \frac{cos \: c}{sin \: c} \\ \\ or \\ \\ \frac{sin \: b - sin \: a}{cos \: b - cos \: a} = - cot \: c \: ...eq1

Put the formula for sin B-sin C and cos B-cos C as shown below

sin B-sin C= 2cos\left( \frac{a + b}{2} \right)sin\left(\frac{b - a}{2} \right) \\ \\ cos B-cos C= 2sin\left(\frac{a + b}{2} \right)sin\left( \frac{a - b}{2} \right) \\ \\

Put these formulas in eq1

 \frac{ 2cos\left( \frac{a + b}{2} \right)sin\left( \frac{b - a}{2}\right ) }{2sin\left( \frac{a + b}{2}\right )sin\left( \frac{a - b}{2}\right )} = - cot \: c \\ \\

or

 -\frac{ 2cos\left( \frac{a + b}{2} \right)sin\left( \frac{a-b}{2} \right) }{2sin\left( \frac{a + b}{2}\right )sin\left( \frac{a - b}{2} \right)} = - cot \: c \\ \\

Cancel common terms from numerator and denominator

 - \frac{cos\left( \frac{a+b}{2}\right) }{sin\left( \frac{a+b}{2}\right) } = - cot \: c \\ \\  - cot \: \left( \frac{a+b}{2} \right) = - cot \: c \\ \\ c=\frac{a+b}{2} \in[a,b]\\ \\

c lies in the closed interval [a,b].Thus, Cauchy's mean value theorem holds.

Final answer:

c=(a+b)/2; which lies in the closed interval [a,b].

Thus, Cauchy's mean value theorem holds and have been proved.

Hope it helps you.

Remark*: Try first two parts.If facing problem then ask as different questions.

To learn more:

1)  find \: the \: value \: of \\ \\ \: \: i + {i}^{2} + {i}^{3} + {i}^{4} + ..+ {i}^{202} Chapter : complex..https://brainly.in/question/41188750

2) Verify Cauchy's mean value theorem for the function sin x and cos x in the interval [0,π/2]https://brainly.in/question/144129

Similar questions