Math, asked by sg5440346, 7 hours ago

Verify Cauchy's mean value theorem for the
function sin x and cos x in the interval [a, b]

Answers

Answered by hukam0685
2

Step-by-step-Explanation:

Given : sin x and cos x

To find: Verify Cauchy's mean value theorem for the function sin x and cos x in the interval [a, b]

Solution:

Cauchy's mean value theorem:

 \frac{f(b) - f(a)}{g(b) - g(a)}  =  \frac{f'(c)}{g'(c)}  \\

Let f(x) = sin x

and g(x)=cos x

Put the function and first order derivative in the formula

 \frac{sin \: b - sin \: a}{cos \: b - cos \: a}  =  \frac{cos \: c}{ - sin \: c}  \\  \\ \frac{sin \: b - sin \: a}{cos \: b - cos \: a}  =  -  \frac{cos \: c}{sin \: c}  \\  \\ or \\  \\ \frac{sin \: b - sin \: a}{cos \: b - cos \: a}  =  - cot \: c \\  \: ...eq1

Put the formula for sin B-sin C=

sin B-sin C= 2cos\left( \frac{a + b}{2} \right)sin\left(\frac{b - a}{2} \right) \\  \\ cos B-cos C= 2sin\left(\frac{a + b}{2} \right)sin\left( \frac{a - b}{2} \right) \\  \\

put these formulas in eq1

 \frac{ 2cos\left( \frac{a + b}{2} \right)sin\left( \frac{b - a}{2}\right ) }{2sin\left( \frac{a + b}{2}\right )sin\left( \frac{a - b}{2}\right )}  =  - cot \: c \\  \\

or

 -\frac{ 2cos\left( \frac{a + b}{2} \right)sin\left( \frac{a-b}{2} \right) }{2sin\left( \frac{a + b}{2}\right )sin\left( \frac{a - b}{2} \right)}  =  - cot \: c \\  \\

Cancel common terms from numerator and denominator

  - \frac{cos\left( \frac{a+b}{2}\right) }{sin\left( \frac{a+b}{2}\right) }  =  - cot \: c \\  \\

 - cot \: \left( \frac{a+b}{2} \right) =  - cot \: c \\  \\ \frac{a+b}{2} = c \\  \\

c lies in the closed interval [a,b].Thus, Cauchy's mean value theorem holds.

Final answer:

c lies in the closed interval [a,b].

Thus, Cauchy's mean value theorem holds and have been proved.

Hope it helps you.

To learn more:

1)  find \: the \: value \: of \\ \\ \: \: i + {i}^{2} + {i}^{3} + {i}^{4} + ..+ {i}^{202}

Chapter : complex..

https://brainly.in/question/41188750

2) Verify Cauchy's mean value theorem for the function sin x and cos x in the interval [0,π/2]

https://brainly.in/question/14412905

Similar questions