Math, asked by anushiyaofficial06, 1 day ago

Verify Cayley hamilton theorem for a matrix A=(1 2 3 3 1 -1 0 2 -1)​

Answers

Answered by ibrahimaslam2032
0

Answer:

Step-by-step explanatiA=\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}A=  

 

2

1

3

 

1

1

−1

 

1

−1

1

 

 

Characteristic polynomial of A,

det(A-\lambda I)=0det(A−λI)=0

\Rightarrow det\left(\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix} - \lambda \begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}\right)=0⇒det  

 

 

2

1

3

 

1

1

−1

 

1

−1

1

 

−λ  

 

1

0

0

 

0

1

0

 

0

0

1

 

 

=0

\Rightarrow det \left(\begin{bmatrix}2-\lambda&1&1\\1&1-\lambda&-1\\3&-1&1-\lambda\end{bmatrix}\right)=0⇒det  

 

 

2−λ

1

3

 

1

1−λ

−1

 

1

−1

1−λ

 

 

=0

\Rightarrow (2-\lambda)det\left(\begin{bmatrix}1-\lambda&-1\\-1&1-\lambda\end{bmatrix}\right)⇒(2−λ)det([  

1−λ

−1

 

−1

1−λ

])

-det\left(\begin{bmatrix}1&-1\\3&1-\lambda\end{bmatrix}\right)−det([  

1

3

 

−1

1−λ

])

+det\left(\begin{bmatrix}1&1-\lambda\\3&-1\end{bmatrix}\right)=0+det([  

1

3

 

1−λ

−1

])=0

\Rightarrow \left(2-\lambda\right)\left(\lambda^2-2\lambda\right)-\left(-\lambda+4\right)+ \left(3\lambda-4\right)=0⇒(2−λ)(λ  

2

−2λ)−(−λ+4)+(3λ−4)=0

\Rightarrow \lambda^3-4\lambda^2+8=0⇒λ  

3

−4λ  

2

+8=0

\therefore∴ Characteristic polynomial of A :- \lambda^3-4\lambda^2+8=0λ  

3

−4λ  

2

+8=0

Now,

A^2= A\times A =\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}\times \begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}A  

2

=A×A=  

 

2

1

3

 

1

1

−1

 

1

−1

1

 

×  

 

2

1

3

 

1

1

−1

 

1

−1

1

 

 

=\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix}=  

 

8

0

8

 

2

3

1

 

2

−1

5

 

 

and,

A^3=A^2\times A=\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix}\times \begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}A  

3

=A  

2

×A=  

 

8

0

8

 

2

3

1

 

2

−1

5

 

×  

 

2

1

3

 

1

1

−1

 

1

−1

1

 

 

=\begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix}=  

 

24

0

32

 

8

4

4

 

8

−4

12

 

 

Now, by Cayley-Hamilton theorem, putting \lambda=Aλ=A ,

A^3-4A^2+8I=0_{3\times3}A  

3

−4A  

2

+8I=0  

3×3

 

\Rightarrow \begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix}-4\begin{bmatrix}8&2&2\\0&3&-1\\8&1&5\end{bmatrix}⇒  

 

24

0

32

 

8

4

4

 

8

−4

12

 

−4  

 

8

0

8

 

2

3

1

 

2

−1

5

 

 

+8\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}=0_{3\times3}+8  

 

1

0

0

 

0

1

0

 

0

0

1

 

=0  

3×3

 

\Rightarrow\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}=0_{3\times3}⇒  

 

0

0

0

 

0

0

0

 

0

0

0

 

=0  

3×3

 

\therefore∴ Cayley-Hamilton Theorem Verified.

Now, by Cayley-Hamilton theorem,

A^3-4A^2+8I=0_{3\times3}A  

3

−4A  

2

+8I=0  

3×3

 

\Rightarrow A(A^3-4A^2+8I)=A\times0_{3\times3}⇒A(A  

3

−4A  

2

+8I)=A×0  

3×3

 

[ Multiplying both side by matrix AA ]

\Rightarrow A^4-4A^3+8A=0_{3\times3}⇒A  

4

−4A  

3

+8A=0  

3×3

 

\Rightarrow A^4 = 4A^3-8A⇒A  

4

=4A  

3

−8A

=4\begin{bmatrix}24&8&8\\0&4&-4\\32&4&12\end{bmatrix}-8\begin{bmatrix}2&1&1\\1&1&-1\\3&-1&1\end{bmatrix}=4  

 

24

0

32

 

8

4

4

 

8

−4

12

 

−8  

 

2

1

3

 

1

1

−1

 

1

−1

1

 

 =\begin{bmatrix}80&24&24\\-8&8&-8\\104&24&40\end{bmatrix}=  

 

80

−8

104

 

24

8

24

 

24

−8

40

 

 

\therefore A^4=\begin{bmatrix}80&24&24\\-8&8&-8\\104&24&40\end{bmatrix}∴A  

4

=  

 

80

−8

104

 

24

8

24

 

24

−8

40

 

on:

Similar questions