Math, asked by DEVGGHYA, 9 months ago

Verify commutative property of the addition for the following pair of numbers.

1. -4/3 and 3/7
2. -2/-5 and 1/3
3. 9/11 and 2/13

Answers

Answered by NightmareQueena
5

☑️ Given pairs of Numbers :

1). \:   - \frac{4}{3}  \: and \:  \frac{3}{7}

2). \:  \frac{ - 2}{ - 5}  \: and \:  \frac{1}{3}  =  \frac{2}{5}  \: and \:  \frac{1}{3}

3). \:  \frac{9}{11}  \: and \:  \frac{2}{13}

━━━━━━━━━━━━━━━━━━━━━━━━

☑️ To Verify :

Commutative Property of Addition.

━━━━━━━━━━━━━━━━━━━━━━━━

\large{\sf{\underline{\underline{\pink{\bigstar{Commutative \: Property \: Of \: Addition }}}}}}

A + B = B + A

Where A and B are the real numbers.

━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\{\yellow{\boxed{\boxed{\mathfrak{\underline{\underline{\maroon{\bigstar{.SoLutiOn.}}}}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━

1). \: A + B  =   - \frac{4}{3} +  \frac{3}{7}

\implies\: A + B  =   \frac{ - 28 + 9}{21}

\implies\: A + B  =   \frac{ - 19}{21}

Also,

B + A =  \frac{3}{7}  + ( -  \frac{4}{3} )

\implies\: B + A =  \frac{3}{7}  -  \frac{4}{3}

\implies\: B + A =  \frac{9 - 28}{21}

\implies\: B + A =  \frac{ - 19}{21}

\therefore A + B = B + A

Hence, verified.

━━━━━━━━━━━━━━━━━━━━━━━━

2). \: A + B  =  \frac{2}{5}  +  \frac{1}{3}

\implies \: A + B  =  \frac{6 + 5}{15}

\implies \: A + B  =  \frac{11}{15}

Also,

B + A  =  \frac{1}{3}  +  \frac{2}{5}

\implies \: B + A  =  \frac{5 + 6}{15}

\implies \: B + A  =  \frac{11}{15}

\therefore A + B = B + A

Hence, Verified.

━━━━━━━━━━━━━━━━━━━━━━━━

3). \: A + B =  \frac{9}{11}  +  \frac{2}{13}

\implies \: A + B =  \frac{117 + 22}{143}

\implies \: A + B =  \frac{139}{143}

Also,

B + A =  \frac{2}{13}  +  \frac{9}{11}

\implies \: B + A =  \frac{22 + 117}{143}

\implies \: B + A =  \frac{ 139}{143}

\therefore A + B = B + A

Hence, Verified.

━━━━━━━━━━━━━━━━━━━━━━━━

Hope It Will Be Helpful To You Mate

#be_brainly

Similar questions