Verify De Morgan's laws for the following sets.
(1). U= {x|x€NA15x520)
A= {2, 3, 5, 7, 11, 12, 13, 17}
B = {1, 4, 6, 8, 10, 14, 17, 18}
(ii). If U={1, 2, 3, .... 10}
A = {2, 4, 6, 8, 10
B = {1, 3, 5, 7, 9)
answer
Answers
Answered by
0
Step-by-step explanation:
Solution :
U = {1, 2, 3, 4, 5, 6}
A = {2, 3}
B = {3, 4, 5}
A ∪ B = {2, 3} ∪ {3, 4, 5}
= {2, 3, 4, 5}
∴ (A ∪ B) ' = {1, 6}
Also A ' = {1, 4, 5, 6}
B ' = {1, 2, 6}
∴ A ' ∩ B ' = {1, 4, 5, 6} ∩ {1, 2, 6}
= {1, 6}
Hence (A ∪ B) ' = A ' ∩ B '
________________________________________________________________
2) If ξ = {a,b,c,d,e}, A = { a,b,d} and B = {b,d,e}. Prove De Morgan's law of intersection.
Solution :
ξ = {a,b,c,d,e}
A = { a,b,d}
B = {b,d,e}
(A ∩ B) = { a,b,d} ∩ {b,d,e}
(A ∩ B) = {b,d}
∴ (A ∩ B)' = {a, c,e} ----->(1)
A' = {c,e} and B' = {a,c}
∴ A' ∪ B' = {c,e} ∪ {a,c}
A' ∪ B'= { a, c,e} ----->(2)
From (1) and (2)
(A ∩ B)' = A' ∪ B' (which is a De Morgan's law of intersection).
Similar questions
Math,
3 months ago
Math,
6 months ago
Psychology,
6 months ago
Physics,
11 months ago
Physics,
11 months ago