Math, asked by vijayasrig529, 5 hours ago

verify gauss divergence theorem for F=x²i+zj+yzk taken over the cube bounded by x=0, x=1, y=0, y=1, z=0 and z=1.​

Answers

Answered by ranisusen3gmailcom
3

Answer:

not a big deal to get a job at a time to do that again and it was good to me that I am not sure yet

Answered by brokendreams
6

Step-by-step explanation:

Given: Vector \vec{F} = x^{2} \hat{i} + z \hat{j} + yz \hat{k}

Dimensions of the cube: x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1

To Prove: Gauss divergence theorem

Solution:

  • Gauss divergence theorem

Mathematical expression for the Gauss divergence theorem is given below;

\iint_s \vec{F} \cdot \hat{n} \ ds = \iiint_V(\vec{\nabla} \cdot \vec{F}) \ dV

where \vec{F} is the vector field; to prove the Gauss divergence theorem, we need to show that the L.H.S and the R.H.S of the theorem are equal.

  • Solving L.H.S. of the theorem for the vector \vec{F} = x^{2} \hat{i} + z \hat{j} + yz \hat{k}

For the given vector \vec{F} = x^{2} \hat{x} + z \hat{y} + yz \hat{k} and dimensions of the cube (figure attached), we can write;

\iint_s \vec{F} \cdot \hat{n} \ ds = \iint_{ABCD} \vec{F} \cdot \hat{n} \ ds + \iint_{EFGH} \vec{F} \cdot \hat{n} \ ds + \iint_{BCFE} \vec{F} \cdot \hat{n} \ ds \\\\ + \iint_{ADGH} \vec{F} \cdot \hat{n} \ ds + \iint_{CDGF} \vec{F} \cdot \hat{n} \ ds + \iint_{ABEH} \vec{F} \cdot \hat{n} \ ds

For each side of a cube, we can replace \hat{n} with the unit vector of the respective side. Therefore,

\Rightarrow \iint_s \vec{F} \cdot \hat{n} \ ds = \iint_{ABCD} \vec{F} \cdot \hat{k} \ ds + \iint_{EFGH} \vec{F} \cdot (-\hat{k}) \ ds + \iint_{BCFE} \vec{F} \cdot \hat{i} \ ds \\\\ + \iint_{ADGH} \vec{F} \cdot (-\hat{i}) \ ds + \iint_{CDGF} \vec{F} \cdot \hat{j} \ ds + \iint_{ABEH} \vec{F} \cdot (-\hat{j}) \ ds

\Rightarrow \iint_s \vec{F} \cdot \hat{n} \ ds = \int\limits^1_{y=0} \int\limits^1_{x=0} {yz} \, dx dy \ - \ \int\limits^1_{y=0} \int\limits^1_{x=0} {yz} \, dx dy \ + \ \int\limits^1_{z=0} \int\limits^1_{y=0} {x^{2} } \, dy dz \ - \ \int\limits^1_{z=0} \int\limits^1_{y=0} {x^{2} } \, dy dz \ + \ \int\limits^1_{z=0} \int\limits^1_{x=0} {z} \, dx dz \ - \ \int\limits^1_{z=0} \int\limits^1_{x=0} {z} \, dx dz

For ABCD ⇒ z = 1, EFGH ⇒ z = 0, BCFE ⇒ x = 1, ADGH ⇒ x = 0, CDGF ⇒ y = 1, and ABEH ⇒ y = 0. Substituting these values in the above expression and solving it, you will get;

\Rightarrow \iint_s \vec{F} \cdot \hat{n} \ ds = \frac{3}{2}

  • Solving R.H.S. of the theorem for the vector \vec{F} = x^{2} \hat{i} + z \hat{j} + yz \hat{k}

Considering \iiint_V(\vec{\nabla} \cdot \vec{F}) \ dV, we can write,

\iiint_V(\vec{\nabla} \cdot \vec{F}) \ dV = \iiint_V(\vec{\nabla} \cdot (x^{2} \hat{i} + z \hat{j} + yz \hat{k})) \ dV = \int\limits^1_{z=0} \int\limits^1_{y=0} \int\limits^1_{x=0}{(2x+y)} \, dxdydz

Solving the above expression further to get;

\iiint_V(\vec{\nabla} \cdot \vec{F}) \ dV = \frac{3}{2} which is equal to L.H.S.

Hence, the gauss divergence theorem is proved with \iint_s \vec{F} \cdot \hat{n} \ ds = \iiint_V(\vec{\nabla} \cdot \vec{F}) \ dV = \frac{3}{2}

Attachments:
Similar questions
Math, 7 months ago