Math, asked by babitabisen6, 1 month ago

Verify given statements by solving both sides ----
1, ( - 7 )power32 ÷ ( - 7)power32 = 1​

Answers

Answered by MsMaya
0

Answer:

(-7)^{32}\:\div(-7)^{32}\:=\:1

Solving L.H.S :-

(-7)^{32}\div(-7)^{32}

= (-7)^{32-32}

= (-7)^0

= 1

Hence, L.H.S = R.H.S .

Answered by Yugant1913
38

  \qquad \bigstar \ \large \overline{ \underline{ \frak{given}}}

  • (-7)³² ÷ (-7)³² = 1

  \qquad \bigstar \ \large \overline{ \underline{ \frak{to \: find}}}

  • Verify the given statement bu Solving both the side

  \qquad \bigstar \ \large \overline{ \underline{ \frak{solution}}}

 \sf \ ∴\:  \:  \:  L.H.S. =  {( - 7)}^{32}  \div  {( - 7)}^{32}  \\  \\  \qquad \sf \:  =  \frac{ {( - 7)}^{32} }{ {( - 7)}^{32} }  \\  \\  \qquad \sf \:  =  \frac{ {( - 1)}^{32}  {(7)}^{32} }{ {( - 1)}^{32}  {(7)}^{32} }  \\  \\

 \qquad  \qquad\sf \:  =  \frac{1. {(7)}^{32} }{1. {(7)}^{32} }  \\  \\

  \:  \sf\qquad\qquad =  \frac{ {(7)}^{32} }{ {(7)}^{32} }  \:   \:  \:  \:  \:  \:  \:  \:  \:  \bigg\{∵ \:  \frac{ {a}^{m} }{ {a}^{n} }   =  {a}^{m - n}  \bigg\} \\  \\

 \sf \qquad \qquad =  {(7)}^{32 - 32}  \\  \\  \sf \qquad =  {(7)}^{0}  \\  \\\sf \qquad = 1 \\\\

 \sf \qquad \qquad \: = 1 = R. H. S.  \\  \\  \qquad \sf \: So, L. H. S = R. H. S \qquad \qquad \qquad \qquad \frak{ \red{proved}}

Similar questions