Math, asked by abdulvenkat46, 23 days ago

Verify Green’s theorem in the plane for ∫c{(x-2y)dx +xdy } taken around the circle x2+y2 =1

Answers

Answered by ItzKajalKaLover
3

Answer:

Basic Algebra Identities

(a + b)2 = a2 + b2 + 2ab

(a – b)2 = a2 + b2 – 2ab

a2 – b2 = (a + b)(a – b)

a2 + b2 = (a + b)2 – 2ab = (a – b)2 + 2ab

a3 + b3 = (a + b)(a2 – ab + b2)

a3 – b3 = (a – b)(a2 + ab + b2)

(a + b)3 = a3 + 3ab(a + b) + b3

(a – b)3 = a3 – 3ab(a – b) – b3

Answered by ushmagaur
5

Answer:

Green's theorem does not hold.

Step-by-step explanation:

Green's theorem: The line integral around a closed path enclosing an area equals the surface integral and calculated as

\int\limits_c {Mdx+Ndy} =\int \int\limits_D \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)dA

Given: The enclosed area is around a circle, x^2+y^2=1.

Thus, area = \pi r^2

                 = \pi (1)^2 (Since r=1)

                 = \pi unit square.

Consider the given integral as follows:

\int\limits_c {(x-2y)dx+xdy}

Using Green's theorem,

\int\limits_c {(x-2y)dx+xdy} =\int \int\limits_D \left( \frac{\partial }{\partial x}(x) - \frac{\partial }{\partial y}(x-2y) \right)dxdy

                              =\int \int\limits_D (1 +2)dxdy

                              =3\int \int\limits_D dxdy  ...... (1)

Consider parametric equations.

x=acos \theta

y=asin \theta, where 0\leq a\leq 1 and 0\leq \theta \leq 2\pi

Then Jacobian is,

|J(a, \theta)|=\left[\begin{array}{ccc}\frac{\partial x}{\partial a} &\frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial a} &\frac{\partial y}{\partial \theta} \\ \end{array}\right]

       |J|=\left[\begin{array}{ccc} cos \theta &-asin \theta\\sin \theta &acos \theta \\ \end{array}\right]

            =a

Using parametric equation, the integral (1) reduces to

=3\int \limit^{1}_0 \int\limits^{2\pi}_0 ad\theta da

=3\int \limit^{1}_0 a\left(\theta \right)^{2\pi}_0

=6\pi\int \limit^{1}_0 a da\\=6\pi \left(\frac{a^2}{2} \right)^1_0\\=3\pi

Thus, in the plane for the \int\limits_c {(x-2y)dx+xdy} taken around the circle x^2+y^2=1, Green's theorem does not hold.

To verify the green's theorem radius of given circle must be \sqrt{3}.

#SPJ3

Similar questions