Verify identity
a3
+ b3
= (a + b) (a2
- ab + b2
)
Please answer in LHS = RHS format
Answers
Answered by
0
Answer:
You know that,
(a + b)³ = a³ + 3ab(a + b) + b³
then,
a³ + b³ = (a + b)³ – 3ab(a + b)
= (a + b)[(a + b)² – 3ab]
= (a + b)(a² + 2ab + b² – 3ab)
= (a + b)(a² – ab + b² )
Answered by
0
Since the expression is derived from (a+b)^3
So let us expand it
(a+b)^3
= (a+b) (a+b) (a+b)
={(a+b) (a+b)} (a+b)
={a(a+b) + b(a+b)} (a+b)
=(a^2 + ab + ab + b^2) (a+b)
=(a^2 + b^2 + 2ab) (a+b)
=a^2(a+b) + b^2(a+b) + 2ab(a+b)
=a^3 + a^2b + ab^2 + b^3 + 2a^2b + 2ab^2
=a^3 + b^3 + 3a^2b + 3ab^2
=a^3 + b^3 + 3ab(a+b)
Now when we have expanded (a+b)^3 = a^3 + b^3 + 3ab(a+b)
We can equate it
(a+b)^3 = a^3 + b^3 + 3ab(a+b)
(a+b)^3 - 3ab(a+b) = a^3 + b^3
a^3 + b^3 = (a+b)^3 - 3ab(a+b)
Similar questions
History,
1 month ago
English,
1 month ago
Business Studies,
3 months ago
Computer Science,
3 months ago
Chemistry,
10 months ago
Math,
10 months ago
Chemistry,
10 months ago