Math, asked by ashish3060, 1 year ago

verify if -1/2 and 5/2 are zeroes of the polynomial 4x^3-21x-10.if yes then factorize the polynomial​

Answers

Answered by amankumaraman11
4

{ \huge{ \textbf{Given, }}}

{ \boxed{ \large{ \boxed{p(x) =  {4x}^{3}  - 21x - 10}}}} \\ { \boxed{ \large{ \boxed{Zeroes \:  \:  of \:  \: p(x)  =   (- \frac{1}{2}) \:  \:  \&   \:  \: \frac{5}{2}  }}}}

Now, Checking whether the given zeroes are applicable to this polynomial or not.

p( -  \frac{1}{2} ) = 4 {( -  \frac{1}{2} )}^{3}  - 21(  - \frac{1}{2} ) - 10 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4(  - \frac{1}{8} ) + 10.5- 10\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  -  \frac{1}{2}   +  10.5 - 10 \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 0.5 - 0.5 = 0

And,

p( \frac{5}{2} ) =  4{( \frac{5}{2} )}^{3}  - 21( \frac{5}{2} ) - 10\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 4( \frac{125}{8} ) -  \frac{105}{2}  - 10\\  \\   \:  \:  \: \:  \:  \:  \:  \:  \:  \: =  \frac{125}{2}  - 52.5 - 10\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 62.5 - 62.5 = 0

Therefore,

{ \large{ \boxed{ \red{(- \frac{1}{2}) \:  \:  \&   \:  \: \frac{5}{2} \:  \: are \:  \: the \:  \: zeroes \:  \: of \:  \: p(x).}}}}

Now, Factoring the given polynomial, we get,

  =  > {4x}^{3}  - 21x - 10 \\ \\  =  >  {4x}^{3} +  {2x}^{2} -  {2x}^{2}   - x - 20x - 10    \\ \\  =  >  {4x}^{2} (x +  \frac{1}{2} ) - 2x(x +  \frac{1}{2} )  - 20(x +  \frac{1}{2} )\\  \\  =  >(x +  \frac{1}{2} )( {4x}^{2} - 2x - 20 )   \\ \\  =  > (x +  \frac{1}{2} ) [ {4x}^{2} - 10x + 8x - 20 ]\\ \\   =  > (x +  \frac{1}{2} )[2x(2x - 5) + 4(2x - 5)] \\  \\  =  > (x +  \frac{1}{2})[(2x - 5)(2x + 4)] \\  \\  =  > { \boxed{ \red{(x +  \frac{1}{2} )(2x - 5)(2x + 4)}}}

Similar questions